The present work investigates the dynamics of two-dimensional, steady bubbly flows over a surface and inside a symmetric channel with sinusoidal profiles. Bubble dynamics effects are included. The equations of motion for the average flow and the bubble radius are linearized and a closed-form solution is obtained. Energy dissipation due to viscous, thermal and liquid compressibility effects in the dynamics of the bubbles is included, while the relative motion of the two phases and viscous effects at the flow boundaries are neglected. The results are then generalized by means of Fourier synthesis to the case of surfaces with slender profiles of arbitrary shape. The flows display various flow regimes (subsonic, supersonic and superresonant) with different properties according to the value of the relevant flow parameters. Examples are discussed in order to show the effects of the inclusion of the various energy dissipation mechanisms on the flows subject to harmonic excitation. Finally the results for a flow over a surface with a Gaussian-shaped bump are presented and the most important limitations of the theory are briefly discussed.

Linearized Dynamics of Two-Dimensional Bubbly and Cavitating Flows over Slender Surfaces

D'AGOSTINO, LUCA;
1988-01-01

Abstract

The present work investigates the dynamics of two-dimensional, steady bubbly flows over a surface and inside a symmetric channel with sinusoidal profiles. Bubble dynamics effects are included. The equations of motion for the average flow and the bubble radius are linearized and a closed-form solution is obtained. Energy dissipation due to viscous, thermal and liquid compressibility effects in the dynamics of the bubbles is included, while the relative motion of the two phases and viscous effects at the flow boundaries are neglected. The results are then generalized by means of Fourier synthesis to the case of surfaces with slender profiles of arbitrary shape. The flows display various flow regimes (subsonic, supersonic and superresonant) with different properties according to the value of the relevant flow parameters. Examples are discussed in order to show the effects of the inclusion of the various energy dissipation mechanisms on the flows subject to harmonic excitation. Finally the results for a flow over a surface with a Gaussian-shaped bump are presented and the most important limitations of the theory are briefly discussed.
1988
D'Agostino, Luca; BRENNEN C., E; Acosta, A. J.
File in questo prodotto:
File Dimensione Formato  
005 d'Agostino Brennen and Acosta 1988.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 275.98 kB
Formato Adobe PDF
275.98 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/11763
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 23
social impact