We consider a stochastic version of Euler equations using the infinite-dimensional geometric approach as pioneered by Ebin and Marsden (1970). For the Euler equations on a compact manifold (possibly with smooth boundary) we establish local existence and uniqueness of a strong solution in spaces of Sobolev mappings (of high enough regularity). Our approach combines techniques from stochastic analysis and infinite-dimensional geometry and provides a novel toolbox to establish local well-posedness of stochastic non-linear partial differential equations.

Incompressible Euler equations with stochastic forcing: A geometric approach

Maurelli, M;
2023-01-01

Abstract

We consider a stochastic version of Euler equations using the infinite-dimensional geometric approach as pioneered by Ebin and Marsden (1970). For the Euler equations on a compact manifold (possibly with smooth boundary) we establish local existence and uniqueness of a strong solution in spaces of Sobolev mappings (of high enough regularity). Our approach combines techniques from stochastic analysis and infinite-dimensional geometry and provides a novel toolbox to establish local well-posedness of stochastic non-linear partial differential equations.
2023
Maurelli, M; Modin, K; Schmeding, A
File in questo prodotto:
File Dimensione Formato  
MauModSch2023.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 1.83 MB
Formato Adobe PDF
1.83 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
EM_SPDE_revised.pdf

embargo fino al 31/05/2025

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 620.9 kB
Formato Adobe PDF
620.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1177665
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact