We consider a stochastic version of Euler equations using the infinite-dimensional geometric approach as pioneered by Ebin and Marsden (1970). For the Euler equations on a compact manifold (possibly with smooth boundary) we establish local existence and uniqueness of a strong solution in spaces of Sobolev mappings (of high enough regularity). Our approach combines techniques from stochastic analysis and infinite-dimensional geometry and provides a novel toolbox to establish local well-posedness of stochastic non-linear partial differential equations.
Incompressible Euler equations with stochastic forcing: A geometric approach
Maurelli, M;
2023-01-01
Abstract
We consider a stochastic version of Euler equations using the infinite-dimensional geometric approach as pioneered by Ebin and Marsden (1970). For the Euler equations on a compact manifold (possibly with smooth boundary) we establish local existence and uniqueness of a strong solution in spaces of Sobolev mappings (of high enough regularity). Our approach combines techniques from stochastic analysis and infinite-dimensional geometry and provides a novel toolbox to establish local well-posedness of stochastic non-linear partial differential equations.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
MauModSch2023.pdf
non disponibili
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
1.83 MB
Formato
Adobe PDF
|
1.83 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
EM_SPDE_revised.pdf
embargo fino al 31/05/2025
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
620.9 kB
Formato
Adobe PDF
|
620.9 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.