The aim of this paper is to construct left-invariant Einstein pseudo-Riemannian Sasaki metrics on solvable Lie groups. We consider the class of z-standard Sasaki solvable Lie algebras of dimension 2 n+ 3 , which are in one-to-one correspondence with pseudo-Kähler nilpotent Lie algebras of dimension 2n endowed with a compatible derivation, in a suitable sense. We characterize the pseudo-Kähler structures and derivations giving rise to Sasaki–Einstein metrics. We classify z-standard Sasaki solvable Lie algebras of dimension ≤ 7 and those whose pseudo-Kähler reduction is an abelian Lie algebra. The Einstein metrics we obtain are standard, but not of pseudo-Iwasawa type.

Pseudo-Kähler and pseudo-Sasaki structures on Einstein solvmanifolds

Conti D.;
2023-01-01

Abstract

The aim of this paper is to construct left-invariant Einstein pseudo-Riemannian Sasaki metrics on solvable Lie groups. We consider the class of z-standard Sasaki solvable Lie algebras of dimension 2 n+ 3 , which are in one-to-one correspondence with pseudo-Kähler nilpotent Lie algebras of dimension 2n endowed with a compatible derivation, in a suitable sense. We characterize the pseudo-Kähler structures and derivations giving rise to Sasaki–Einstein metrics. We classify z-standard Sasaki solvable Lie algebras of dimension ≤ 7 and those whose pseudo-Kähler reduction is an abelian Lie algebra. The Einstein metrics we obtain are standard, but not of pseudo-Iwasawa type.
2023
Conti, D.; Rossi, F. A.; Segnan Dalmasso, R.
File in questo prodotto:
File Dimensione Formato  
PKPSEinsteinSolv_ContiRossiSegnan.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 513.78 kB
Formato Adobe PDF
513.78 kB Adobe PDF Visualizza/Apri
s10455-023-09894-0.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 504.51 kB
Formato Adobe PDF
504.51 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1181547
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact