The aim of this paper is to construct left-invariant Einstein pseudo-Riemannian Sasaki metrics on solvable Lie groups. We consider the class of z-standard Sasaki solvable Lie algebras of dimension 2 n+ 3 , which are in one-to-one correspondence with pseudo-Kähler nilpotent Lie algebras of dimension 2n endowed with a compatible derivation, in a suitable sense. We characterize the pseudo-Kähler structures and derivations giving rise to Sasaki–Einstein metrics. We classify z-standard Sasaki solvable Lie algebras of dimension ≤ 7 and those whose pseudo-Kähler reduction is an abelian Lie algebra. The Einstein metrics we obtain are standard, but not of pseudo-Iwasawa type.
Pseudo-Kähler and pseudo-Sasaki structures on Einstein solvmanifolds
Conti D.;
2023-01-01
Abstract
The aim of this paper is to construct left-invariant Einstein pseudo-Riemannian Sasaki metrics on solvable Lie groups. We consider the class of z-standard Sasaki solvable Lie algebras of dimension 2 n+ 3 , which are in one-to-one correspondence with pseudo-Kähler nilpotent Lie algebras of dimension 2n endowed with a compatible derivation, in a suitable sense. We characterize the pseudo-Kähler structures and derivations giving rise to Sasaki–Einstein metrics. We classify z-standard Sasaki solvable Lie algebras of dimension ≤ 7 and those whose pseudo-Kähler reduction is an abelian Lie algebra. The Einstein metrics we obtain are standard, but not of pseudo-Iwasawa type.File | Dimensione | Formato | |
---|---|---|---|
PKPSEinsteinSolv_ContiRossiSegnan.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
513.78 kB
Formato
Adobe PDF
|
513.78 kB | Adobe PDF | Visualizza/Apri |
s10455-023-09894-0.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
504.51 kB
Formato
Adobe PDF
|
504.51 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.