In the context of naturally occurring nitrogen heterocycles, nicotine is a chiral alkaloid present in tobacco plants, which can target and stimulate nicotinic acetylcholine receptors (nAChRs), a class of ligand-gated ion channels commonly located throughout the human brain. Due to its well-known toxicity for humans, there is considerable interest in the development of synthetic analogues; in particular, conformationally restricted analogues of nicotine have emerged as promising drug molecules for selective nAChR-targeting ligands. In the present mini-review, we will describe the synthesis of the conformationally restricted analogues of nicotine involving one or more catalytic processes. In particular, we will follow a systematic approach as a function of the heteroarene structure, considering: (a) 2,3-annulated tricyclic derivatives; (b) 3,4-annulated tricyclic derivatives; (c) tetracyclic derivatives; and (d) other polycyclic derivatives. For each of them we will also consider, when carried out, biological studies on their activity for specific nAChR subunits.

Synthetic Methods for the Preparation of Conformationally Restricted Analogues of Nicotine

Albano, Gianluigi
Ultimo
2021-01-01

Abstract

In the context of naturally occurring nitrogen heterocycles, nicotine is a chiral alkaloid present in tobacco plants, which can target and stimulate nicotinic acetylcholine receptors (nAChRs), a class of ligand-gated ion channels commonly located throughout the human brain. Due to its well-known toxicity for humans, there is considerable interest in the development of synthetic analogues; in particular, conformationally restricted analogues of nicotine have emerged as promising drug molecules for selective nAChR-targeting ligands. In the present mini-review, we will describe the synthesis of the conformationally restricted analogues of nicotine involving one or more catalytic processes. In particular, we will follow a systematic approach as a function of the heteroarene structure, considering: (a) 2,3-annulated tricyclic derivatives; (b) 3,4-annulated tricyclic derivatives; (c) tetracyclic derivatives; and (d) other polycyclic derivatives. For each of them we will also consider, when carried out, biological studies on their activity for specific nAChR subunits.
2021
Panda, Biswajit; Albano, Gianluigi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1182388
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact