Leggett and Garg formulated macrorealist models encoding our intuition on classical systems, i.e., physical quantities have a definite value that can be measured with minimal disturbance, and with the goal of testing macroscopic quantum coherence effects. The associated inequalities, involving the statistics of sequential mea-surements on the system, are violated by quantum-mechanical predictions and experimental observations. Such tests, however, are subject to loopholes: a classical explanation can be recovered assuming specific models of measurement disturbance. We review recent theoretical and experimental progress in characterizing macrorealist and quantum temporal correlations, and in closing loopholes associated with Leggett-Garg tests. Finally, we review recent definitions of nonclassical temporal correlations, which go beyond macrorealist models by relaxing the assumption on the measurement disturbance, and their applications in sequential quantum information processing.

Leggett-Garg macrorealism and temporal correlations

Costantino Budroni
Ultimo
2023-01-01

Abstract

Leggett and Garg formulated macrorealist models encoding our intuition on classical systems, i.e., physical quantities have a definite value that can be measured with minimal disturbance, and with the goal of testing macroscopic quantum coherence effects. The associated inequalities, involving the statistics of sequential mea-surements on the system, are violated by quantum-mechanical predictions and experimental observations. Such tests, however, are subject to loopholes: a classical explanation can be recovered assuming specific models of measurement disturbance. We review recent theoretical and experimental progress in characterizing macrorealist and quantum temporal correlations, and in closing loopholes associated with Leggett-Garg tests. Finally, we review recent definitions of nonclassical temporal correlations, which go beyond macrorealist models by relaxing the assumption on the measurement disturbance, and their applications in sequential quantum information processing.
2023
Vitagliano, Giuseppe; Budroni, Costantino
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1183367
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 8
social impact