The Fast Track processor (FTK) has been proposed for high-quality track finding at very high rates (Level-1 output rates) for the LHC experiments. Fast, efficient and precise pattern recognition has been studied using a silicon 7-layer sub-detector, including a subset of the pixel and SCT layers. We tested the FTK algorithms using the ATLAS full simulation. We compare the FTK reconstruction quality with the tracking capability of the offline iPatRec algorithm. We show that similar resolutions and efficiencies are reached by FTK at a speed higher than iPatRec by orders of magnitude. With FTK full events are reconstructed at the Level-1 output rate. B0s rarr mu + mu- events are fufly simuiated together with background samples. We show that a low Level-2 rate is allowed by FTK, even using a singie 6 GeV Level-1 muon selection trigger. FTK provides the full-resolution track list ready for the Level-2 BB0s identification. All selection cuts performed by the Event Filter can be easily anticipated at Level-2. We present the B0s rarr mu + mu- efficiency gain and related Level-2 rates.

Performance of the Proposed Fast Track Processor for Rare Decays at the ATLAS Experiment

DELL'ORSO, MAURO;PUNZI, GIOVANNI;
2008-01-01

Abstract

The Fast Track processor (FTK) has been proposed for high-quality track finding at very high rates (Level-1 output rates) for the LHC experiments. Fast, efficient and precise pattern recognition has been studied using a silicon 7-layer sub-detector, including a subset of the pixel and SCT layers. We tested the FTK algorithms using the ATLAS full simulation. We compare the FTK reconstruction quality with the tracking capability of the offline iPatRec algorithm. We show that similar resolutions and efficiencies are reached by FTK at a speed higher than iPatRec by orders of magnitude. With FTK full events are reconstructed at the Level-1 output rate. B0s rarr mu + mu- events are fufly simuiated together with background samples. We show that a low Level-2 rate is allowed by FTK, even using a singie 6 GeV Level-1 muon selection trigger. FTK provides the full-resolution track list ready for the Level-2 BB0s identification. All selection cuts performed by the Event Filter can be easily anticipated at Level-2. We present the B0s rarr mu + mu- efficiency gain and related Level-2 rates.
2008
Brubaker, E; Ciobanu, C; Crescioli, F; Dunford, M; Giannetti, P; Young Kee, Kim; Liss, T; Dell'Orso, Mauro; Punzi, Giovanni; Shochet, M; Usai, G; Vivarelli, I; Volpi, G; Yorita, K.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/118424
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 6
social impact