Inscription of fiber-compatible active waveguides in high-gain glass, followed by direct interconnection with few-mode fibers, is one of the most promising solutions for all-optical mode-division multiplexing. In this work, based on the femtosecond laser writing technique, we propose a general fabrication scheme for inscribing high-order mode waveguides in glass, by carefully tailoring the cross-section of the waveguides to match the mode intensity distribution via an improved multi-scan approach. Specifically, we design and fabricate two kinds of waveguides, namely, LP01-mode waveguide and LP11-mode waveguide in a highly Er3+-doped phosphate glass, enabling the insertion loss of the waveguides to be as low as 1.88 dB, and the mode extraction factor of the LP11-mode waveguide up to ∼24 dB. Importantly, we have successfully achieved optical amplification of the waveguides, with an on-off gain as high as 3.52 dB. This novel high-order mode waveguide amplifier has broad application prospects in monolithic on-chip integrated photonic light sources and optical interconnection with few-mode fiber and/or silicon-based waveguide.

High-order mode waveguide amplifier with high mode extinction ratio written in an Er3+-doped phosphate glass

Barillaro G.;
2023-01-01

Abstract

Inscription of fiber-compatible active waveguides in high-gain glass, followed by direct interconnection with few-mode fibers, is one of the most promising solutions for all-optical mode-division multiplexing. In this work, based on the femtosecond laser writing technique, we propose a general fabrication scheme for inscribing high-order mode waveguides in glass, by carefully tailoring the cross-section of the waveguides to match the mode intensity distribution via an improved multi-scan approach. Specifically, we design and fabricate two kinds of waveguides, namely, LP01-mode waveguide and LP11-mode waveguide in a highly Er3+-doped phosphate glass, enabling the insertion loss of the waveguides to be as low as 1.88 dB, and the mode extraction factor of the LP11-mode waveguide up to ∼24 dB. Importantly, we have successfully achieved optical amplification of the waveguides, with an on-off gain as high as 3.52 dB. This novel high-order mode waveguide amplifier has broad application prospects in monolithic on-chip integrated photonic light sources and optical interconnection with few-mode fiber and/or silicon-based waveguide.
2023
Sun, X.; Wang, Y.; Zhong, L.; Chen, D.; Xu, B.; Ma, Z.; Liu, X.; Barillaro, G.; Chen, Z.; Qiu, J.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1186908
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact