We consider a stationary Navier Stokes system with shear dependent viscosity, under Dirichlet boundary conditions. We prove Holder continuity, up to the boundary, for the gradient of the velocity field together with the L-2-summability of the weak second derivatives. The results hold under suitable smallness assumptions on the force term and without any restriction on the range of p is an element of (1, 2).
Autori interni: | |
Autori: | Crispo F.; Grisanti C.R. |
Titolo: | On the existence, uniqueness and C^{1,\gamma}(\overline \Omega)\cap W^{2,2}(\Omega) regularity for a class of shear-thinning fluids |
Anno del prodotto: | 2008 |
Digital Object Identifier (DOI): | 10.1007/s00021-008-0282-1 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.