We consider a stationary Navier Stokes system with shear dependent viscosity, under Dirichlet boundary conditions. We prove Holder continuity, up to the boundary, for the gradient of the velocity field together with the L-2-summability of the weak second derivatives. The results hold under suitable smallness assumptions on the force term and without any restriction on the range of p is an element of (1, 2).

On the existence, uniqueness and C^{1,\gamma}(\overline \Omega)\cap W^{2,2}(\Omega) regularity for a class of shear-thinning fluids

GRISANTI, CARLO ROMANO
2008-01-01

Abstract

We consider a stationary Navier Stokes system with shear dependent viscosity, under Dirichlet boundary conditions. We prove Holder continuity, up to the boundary, for the gradient of the velocity field together with the L-2-summability of the weak second derivatives. The results hold under suitable smallness assumptions on the force term and without any restriction on the range of p is an element of (1, 2).
2008
Crispo, F.; Grisanti, CARLO ROMANO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/118709
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 25
social impact