Algorithmic skeletons have been exploited to implement several parallel programming environments, targeting workstation clusters as well as workstation networks and computational grids. When targeting non-dedicated clusters, workstation networks and grids, security has to be taken adequately into account in order to guarantee both code and data confidentiality and integrity. However, introducing security is usually an expensive activity, both in terms of the effort required to managed security mechanisms and in terms of the time spent performing security related activities at run time. We discuss the cost of security introduction as well as how some features typical of skeleton technology can be exploited to improve the efficiency code and data securing in a typical skeleton based parallel programming environment and we evaluate the performance cost of security mechanisms implemented exploiting state of the art tools. In particular, we take into account the cost of security introduction in muskel, a Java based skeletal system exploiting macro data flow implementation technology. We con- sider the adoption of mechanisms that allow securing all the communications involving remote, unreli- able nodes and we evaluate the cost of such mechanisms. Also, we consider the implications on the computational grains needed to scale secure and insecure skeletal computations.

Securing skeletal systems with limited performance penalty: the muskel experience

DANELUTTO, MARCO
2008-01-01

Abstract

Algorithmic skeletons have been exploited to implement several parallel programming environments, targeting workstation clusters as well as workstation networks and computational grids. When targeting non-dedicated clusters, workstation networks and grids, security has to be taken adequately into account in order to guarantee both code and data confidentiality and integrity. However, introducing security is usually an expensive activity, both in terms of the effort required to managed security mechanisms and in terms of the time spent performing security related activities at run time. We discuss the cost of security introduction as well as how some features typical of skeleton technology can be exploited to improve the efficiency code and data securing in a typical skeleton based parallel programming environment and we evaluate the performance cost of security mechanisms implemented exploiting state of the art tools. In particular, we take into account the cost of security introduction in muskel, a Java based skeletal system exploiting macro data flow implementation technology. We con- sider the adoption of mechanisms that allow securing all the communications involving remote, unreli- able nodes and we evaluate the cost of such mechanisms. Also, we consider the implications on the computational grains needed to scale secure and insecure skeletal computations.
2008
M., Aldinucci; Danelutto, Marco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/118779
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact