: Silylated-acetylated cyclodextrin (CD) derivatives have recently been investigated, via nuclear magnetic resonance (NMR) spectroscopy, as chiral sensors for substrates that are endowed and devoid of fluorine atoms, and the importance of Si-F interaction in the discrimination phenomena has been assessed. Here, the contributions of both superficial interactions and inclusion processes were further evaluated by extending the records to other chiral fluorinated substrates of interest for pharmaceutical applications. Non-equivalences were measured for both the 1H and 19F resonances in equimolar mixtures with the CDs; the promising results also supported the use of chiral sensors in sub-stoichiometric amounts. Finally, the occurrence of inclusion processes was evaluated by analyzing the intermolecular dipolar interactions by means of ROESY (Rotating-frame Overhauser Enhancement Spectroscopy) experiments. The study confirmed that the γCD derivative is the best chiral solvating agent for the fluorinated substrates investigated, likely due to the higher number of silyl moieties that can be involved in Si-F interactions. The contribution of inclusion processes to the enantiodiscrimination was also confirmed by comparison with the α- and β-analogues. Overall, the CD derivatives proved to be able to discriminate fluorinated substrates even when used in sub-stoichiometric amounts.

Silylated-Acetylated Cyclodextrins as Chiral Sensors for the Enantiodiscrimination of Fluorinated Anesthetics

Balzano, Federica
Secondo
;
Uccello Barretta, Gloria
;
2023-01-01

Abstract

: Silylated-acetylated cyclodextrin (CD) derivatives have recently been investigated, via nuclear magnetic resonance (NMR) spectroscopy, as chiral sensors for substrates that are endowed and devoid of fluorine atoms, and the importance of Si-F interaction in the discrimination phenomena has been assessed. Here, the contributions of both superficial interactions and inclusion processes were further evaluated by extending the records to other chiral fluorinated substrates of interest for pharmaceutical applications. Non-equivalences were measured for both the 1H and 19F resonances in equimolar mixtures with the CDs; the promising results also supported the use of chiral sensors in sub-stoichiometric amounts. Finally, the occurrence of inclusion processes was evaluated by analyzing the intermolecular dipolar interactions by means of ROESY (Rotating-frame Overhauser Enhancement Spectroscopy) experiments. The study confirmed that the γCD derivative is the best chiral solvating agent for the fluorinated substrates investigated, likely due to the higher number of silyl moieties that can be involved in Si-F interactions. The contribution of inclusion processes to the enantiodiscrimination was also confirmed by comparison with the α- and β-analogues. Overall, the CD derivatives proved to be able to discriminate fluorinated substrates even when used in sub-stoichiometric amounts.
2023
Recchimurzo, Alessandra; Balzano, Federica; Uccello Barretta, Gloria; Gherardi, Luca; Malanga, Milo; Aiello, Federica
File in questo prodotto:
File Dimensione Formato  
molecules-28-02804-v2.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 4.32 MB
Formato Adobe PDF
4.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1188234
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact