Experimental studies on the natural optical activity and Faraday rotation of the three different stereoisomers of tartaric acid were reported recently by Ruchon et al. [Chem. Phys. Lett. 2005, 412,411]. The authors noted that the Faraday rotation of the meso (R,S) system differed from those of the (S,S) and (R,R) enantiomers, and derived a simple dipole–dipole interaction model to describe what they claim to be a “new property”. We present the results of both density functional theory (DFT) and coupled cluster calculations for a structurally elementary model system composed of two chiral carbon atoms presenting three diastereoisomers (C2H2Cl2F2), as well as a detailed DFTstudy of the natural and magnetic-field-induced optical rotation of tartaric acid. The effects of electron correlation, basis set, and conformational flexibility are analyzed. It is found that the specific Faraday rotations of the chiral (R,R) and meso forms of tartaric acid (for l= 632.8 nm) differ by about 3%, a value which is quite close in magnitude—but of opposite sign—to that obtained with the simplified model proposed by Ruchon and co-workers.

An ab-initio study of the magneto-optical rotation of diastereoisomers

CAPPELLI, CHIARA;
2008-01-01

Abstract

Experimental studies on the natural optical activity and Faraday rotation of the three different stereoisomers of tartaric acid were reported recently by Ruchon et al. [Chem. Phys. Lett. 2005, 412,411]. The authors noted that the Faraday rotation of the meso (R,S) system differed from those of the (S,S) and (R,R) enantiomers, and derived a simple dipole–dipole interaction model to describe what they claim to be a “new property”. We present the results of both density functional theory (DFT) and coupled cluster calculations for a structurally elementary model system composed of two chiral carbon atoms presenting three diastereoisomers (C2H2Cl2F2), as well as a detailed DFTstudy of the natural and magnetic-field-induced optical rotation of tartaric acid. The effects of electron correlation, basis set, and conformational flexibility are analyzed. It is found that the specific Faraday rotations of the chiral (R,R) and meso forms of tartaric acid (for l= 632.8 nm) differ by about 3%, a value which is quite close in magnitude—but of opposite sign—to that obtained with the simplified model proposed by Ruchon and co-workers.
2008
Kula, M; Cappelli, Chiara; Coriani, S; Rizzo, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/119257
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact