: Perineuronal nets (PNNs) surround specific neurons in the brain and are involved in various forms of plasticity and clinical conditions. However, our understanding of the PNN role in these phenomena is limited by the lack of highly quantitative maps of PNN distribution and association with specific cell types. Here, we present a comprehensive atlas of Wisteria floribunda agglutinin (WFA)-positive PNNs and colocalization with parvalbumin (PV) cells for over 600 regions of the adult mouse brain. Data analysis shows that PV expression is a good predictor of PNN aggregation. In the cortex, PNNs are dramatically enriched in layer 4 of all primary sensory areas in correlation with thalamocortical input density, and their distribution mirrors intracortical connectivity patterns. Gene expression analysis identifies many PNN-correlated genes. Strikingly, PNN-anticorrelated transcripts are enriched in synaptic plasticity genes, generalizing PNNs' role as circuit stability factors.

A comprehensive atlas of perineuronal net distribution and colocalization with parvalbumin in the adult mouse brain

Gennaro C.;Tognini P.;
2023-01-01

Abstract

: Perineuronal nets (PNNs) surround specific neurons in the brain and are involved in various forms of plasticity and clinical conditions. However, our understanding of the PNN role in these phenomena is limited by the lack of highly quantitative maps of PNN distribution and association with specific cell types. Here, we present a comprehensive atlas of Wisteria floribunda agglutinin (WFA)-positive PNNs and colocalization with parvalbumin (PV) cells for over 600 regions of the adult mouse brain. Data analysis shows that PV expression is a good predictor of PNN aggregation. In the cortex, PNNs are dramatically enriched in layer 4 of all primary sensory areas in correlation with thalamocortical input density, and their distribution mirrors intracortical connectivity patterns. Gene expression analysis identifies many PNN-correlated genes. Strikingly, PNN-anticorrelated transcripts are enriched in synaptic plasticity genes, generalizing PNNs' role as circuit stability factors.
2023
Lupori, L.; Totaro, V.; Cornuti, S.; Ciampi, L.; Carrara, F.; Grilli, E.; Viglione, A.; Tozzi, F.; Putignano, E.; Mazziotti, R.; Amato, G.; Gennaro, C...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1196413
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 17
  • ???jsp.display-item.citation.isi??? ND
social impact