Smooth minimal surfaces of general type with K2=1, pg=2, and q=0 constitute a fundamental example in the geography of algebraic surfaces, and the 28-dimensional moduli space M of their canonical models admits a modular compactification \bar M via the minimal model program. We describe eight new irreducible boundary divisors in such compactification parameterizing reducible stable surfaces. Additionally, we study the relation with the GIT compactification of M and the Hodge theory of the degenerate surfaces that the eight divisors parameterize.

Unimodal singularities and boundary divisors in the KSBA moduli of a class of Horikawa surfaces

Pearlstein G.;Schaffler L.
;
2024-01-01

Abstract

Smooth minimal surfaces of general type with K2=1, pg=2, and q=0 constitute a fundamental example in the geography of algebraic surfaces, and the 28-dimensional moduli space M of their canonical models admits a modular compactification \bar M via the minimal model program. We describe eight new irreducible boundary divisors in such compactification parameterizing reducible stable surfaces. Additionally, we study the relation with the GIT compactification of M and the Hodge theory of the degenerate surfaces that the eight divisors parameterize.
2024
Gallardo, P.; Pearlstein, G.; Schaffler, L.; Zhang, Z.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1204067
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact