Beauty and personal care became a significant part of the global economy for two reasons: (1) The elderly growing in the global population and (2) the desire of women and men to appear younger and more attractive. Thus, both young and old people are looking for revolutionary nutritional eco-cosmetics (combined use of cosmeceuticals and nutraceuticals) manufactured by natural active ingredients, using biopolymers as substrates, and made by innovative and sustainable technologies. Consequently, the market of both cosmetics and diet supplements is continually growing together with the request of natural active ingredients, including bio-peptides and biological macromolecules such as chitin and lignin. Therefore, both consumers and industry need to recover innovative active ingredients and carriers (vehicles), naturally derived and supported by advanced methods for controlling their effectiveness and safeness on skin and mucous membrane layers. The use of selected bio-ingredients, such as hyaluronic acid and bio-mimetic peptides, obtained by advanced, innovative and sustainable bio nanotechnologies, will be of interest to develop smart cosmeceutical and nutraceutical formulations. Innovation is considered the key business strategy to drive sustainable economic growth. For trying to reduce waste and produce sustainable, biodegradable and innovative products, the realization of new non-woven tissues, used as carriers for making innovative cosmeceuticals and nutraceuticals was considered. Both carriers and active ingredients have been obtained from food waste to reduce loss and pollution. This review will report a brief description of the skin functions, trying also to focus and discuss some of the active ingredients and carriers used in nutritional eco-cosmetics to clarify the supposed mechanism of action, effectiveness and safeness of both active ingredients and carriers, as well as the supposed activity of beauty and personal care products.

Active Ingredients and Carriers in Nutritional Eco-Cosmetics

Coltelli, Maria-Beatrice
Ultimo
Conceptualization
2023-01-01

Abstract

Beauty and personal care became a significant part of the global economy for two reasons: (1) The elderly growing in the global population and (2) the desire of women and men to appear younger and more attractive. Thus, both young and old people are looking for revolutionary nutritional eco-cosmetics (combined use of cosmeceuticals and nutraceuticals) manufactured by natural active ingredients, using biopolymers as substrates, and made by innovative and sustainable technologies. Consequently, the market of both cosmetics and diet supplements is continually growing together with the request of natural active ingredients, including bio-peptides and biological macromolecules such as chitin and lignin. Therefore, both consumers and industry need to recover innovative active ingredients and carriers (vehicles), naturally derived and supported by advanced methods for controlling their effectiveness and safeness on skin and mucous membrane layers. The use of selected bio-ingredients, such as hyaluronic acid and bio-mimetic peptides, obtained by advanced, innovative and sustainable bio nanotechnologies, will be of interest to develop smart cosmeceutical and nutraceutical formulations. Innovation is considered the key business strategy to drive sustainable economic growth. For trying to reduce waste and produce sustainable, biodegradable and innovative products, the realization of new non-woven tissues, used as carriers for making innovative cosmeceuticals and nutraceuticals was considered. Both carriers and active ingredients have been obtained from food waste to reduce loss and pollution. This review will report a brief description of the skin functions, trying also to focus and discuss some of the active ingredients and carriers used in nutritional eco-cosmetics to clarify the supposed mechanism of action, effectiveness and safeness of both active ingredients and carriers, as well as the supposed activity of beauty and personal care products.
2023
Morganti, Pierfrancesco; Lohani, Alka; Gagliardini, Alessandro; Morganti, Gianluca; Coltelli, Maria-Beatrice
File in questo prodotto:
File Dimensione Formato  
compounds-03-00011.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 42.81 MB
Formato Adobe PDF
42.81 MB Adobe PDF Visualizza/Apri
compounds-03-00011_compressed.pdf

accesso aperto

Descrizione: Versione compressa per invio a LoginMiur
Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 470.56 kB
Formato Adobe PDF
470.56 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1208987
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact