Many emerging applications analyze data streams by running graphs of communicating tasks called operators. To develop and deploy such applications, Stream Processing Systems (SPSs) like Apache Storm and Flink have been made available to researchers and practitioners. They exhibit imperative or declarative programming interfaces to develop operators running arbitrary algorithms working on structured or unstructured data streams. In this context, the interest in leveraging hardware acceleration with GPUs has become more pronounced in high-throughput use cases. Unfortunately, GPU acceleration has been studied for relational operators working on structured streams only, while non-relational operators have often been overlooked. This paper presents WINDFLOW, a library supporting the seamless GPU offloading of general partitioned-stateful operators, extending the range of operators that benefit from hardware acceleration. Its design provides high throughput still exposing a high-level API to users compared with the raw utilization of GPUs in Apache Flink.

General-purpose data stream processing on heterogeneous architectures with WindFlow

Mencagli G.
Primo
;
Torquati M.;Griebler D.;Fais A.;Danelutto M.
2024-01-01

Abstract

Many emerging applications analyze data streams by running graphs of communicating tasks called operators. To develop and deploy such applications, Stream Processing Systems (SPSs) like Apache Storm and Flink have been made available to researchers and practitioners. They exhibit imperative or declarative programming interfaces to develop operators running arbitrary algorithms working on structured or unstructured data streams. In this context, the interest in leveraging hardware acceleration with GPUs has become more pronounced in high-throughput use cases. Unfortunately, GPU acceleration has been studied for relational operators working on structured streams only, while non-relational operators have often been overlooked. This paper presents WINDFLOW, a library supporting the seamless GPU offloading of general partitioned-stateful operators, extending the range of operators that benefit from hardware acceleration. Its design provides high throughput still exposing a high-level API to users compared with the raw utilization of GPUs in Apache Flink.
2024
Mencagli, G.; Torquati, M.; Griebler, D.; Fais, A.; Danelutto, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1209709
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact