SHIP is a new general purpose fixed target facility, whose Technical Proposal has been recently reviewed by the CERN SPS Committee, who recommended that the experiment proceeds further to a Comprehensive Design phase. In its initial phase, the 400GeV proton beam extracted from the SPS will be dumped on a heavy target with the aim of integrating 2 × 10²⁰ pot in 5 years. A dedicated detector, based on a long vacuum tank followed by a spectrometer and particle identification detectors, will allow probing a variety of models with light long-lived exotic particles and masses below O(10) GeV/c ². The main focus will be the physics of the so-called Hidden Portals, i.e. search for Dark Photons, Light scalars and pseudo-scalars, and Heavy Neutrinos. The sensitivity to Heavy Neutrinos will allow for the first time to probe, in the mass range between the kaon and the charm meson mass, a coupling range for which Baryogenesis and active neutrino masses could also be explained. Another dedicated detector will allow the study of neutrino cross-sections and angular distributions. ντ deep inelastic scattering cross sections will be measured with a statistics 1000 times larger than currently available, with the extraction of the F₄ and F₅ structure functions, never measured so far and allow for new tests of lepton non-universality with sensitivity to BSM physics.
SHiP: a new facility to search for long lived neutral particles and investigate the ντ properties
Graverini E
2018-01-01
Abstract
SHIP is a new general purpose fixed target facility, whose Technical Proposal has been recently reviewed by the CERN SPS Committee, who recommended that the experiment proceeds further to a Comprehensive Design phase. In its initial phase, the 400GeV proton beam extracted from the SPS will be dumped on a heavy target with the aim of integrating 2 × 10²⁰ pot in 5 years. A dedicated detector, based on a long vacuum tank followed by a spectrometer and particle identification detectors, will allow probing a variety of models with light long-lived exotic particles and masses below O(10) GeV/c ². The main focus will be the physics of the so-called Hidden Portals, i.e. search for Dark Photons, Light scalars and pseudo-scalars, and Heavy Neutrinos. The sensitivity to Heavy Neutrinos will allow for the first time to probe, in the mass range between the kaon and the charm meson mass, a coupling range for which Baryogenesis and active neutrino masses could also be explained. Another dedicated detector will allow the study of neutrino cross-sections and angular distributions. ντ deep inelastic scattering cross sections will be measured with a statistics 1000 times larger than currently available, with the extraction of the F₄ and F₅ structure functions, never measured so far and allow for new tests of lepton non-universality with sensitivity to BSM physics.File | Dimensione | Formato | |
---|---|---|---|
02_graverini.pdf
accesso aperto
Descrizione: Presentazione
Tipologia:
Altro materiale allegato
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
10.9 MB
Formato
Adobe PDF
|
10.9 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.