The aim of this paper is to develop highly magnetized, biodegradable and biocompatible, polymeric nanoparticles for drug delivery intell therapy. Alginate magnetic nanoparticles are realized by an emulsion/reticulation technique, after the dispersion of magnetite in an alginate solution. Such nanoparticles are characterized in terms of external morphology (FIB imaging), microstructure (TEM imaging), size distribution, zeta potential, magnetic properties (SQUID analysis) and drug release behaviour. Magnetization curves hsow the typical trend of superparamagnetic materials. Important parameters, such as magnetic permeability and magnetic momentum, are derived by employing Langevin theory. Experimental results reveal that a bi-exponential model fully describes the drug release. Finally, in vitro experiments on NIH/3T3 cells are carried out and demonstrate that our magnetic alginate nanoparticles can effectively drive the drug delivery towards an external magnetic field source.

Magnetic driven alginate nanoparticles for targeted drug delivery

RAFFA, VITTORIA;MENCIASSI, ARIANNA;DARIO, PAOLO;
2008-01-01

Abstract

The aim of this paper is to develop highly magnetized, biodegradable and biocompatible, polymeric nanoparticles for drug delivery intell therapy. Alginate magnetic nanoparticles are realized by an emulsion/reticulation technique, after the dispersion of magnetite in an alginate solution. Such nanoparticles are characterized in terms of external morphology (FIB imaging), microstructure (TEM imaging), size distribution, zeta potential, magnetic properties (SQUID analysis) and drug release behaviour. Magnetization curves hsow the typical trend of superparamagnetic materials. Important parameters, such as magnetic permeability and magnetic momentum, are derived by employing Langevin theory. Experimental results reveal that a bi-exponential model fully describes the drug release. Finally, in vitro experiments on NIH/3T3 cells are carried out and demonstrate that our magnetic alginate nanoparticles can effectively drive the drug delivery towards an external magnetic field source.
2008
Ciofani, G; Raffa, Vittoria; Obata, Y; Menciassi, Arianna; Dario, Paolo; Takeoka, S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/121073
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 21
social impact