In this paper, we examine a finite element approximation of the steady p(⋅)-Navier-Stokes equations (p(⋅) is variable dependent) and prove orders of convergence by assuming natural fractional regularity assumptions on the velocity vector field and the kinematic pressure. Compared to previous results, we treat the convective term and employ a more practicable discretization of the power-law index p(⋅). Numerical experiments confirm the quasi-optimality of the a priori error estimates (for the velocity) with respect to fractional regularity assumptions on the velocity vector field and the kinematic pressure.

Error analysis for a finite element approximation of the steady p(.)-Navier-Stokes equations

Luigi C. Berselli;
In corso di stampa

Abstract

In this paper, we examine a finite element approximation of the steady p(⋅)-Navier-Stokes equations (p(⋅) is variable dependent) and prove orders of convergence by assuming natural fractional regularity assumptions on the velocity vector field and the kinematic pressure. Compared to previous results, we treat the convective term and employ a more practicable discretization of the power-law index p(⋅). Numerical experiments confirm the quasi-optimality of the a priori error estimates (for the velocity) with respect to fractional regularity assumptions on the velocity vector field and the kinematic pressure.
In corso di stampa
Berselli, Luigi C.; Kaltenbach, Alex
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1210807
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact