The continuation of point vortex dynamics after a vortex collapse is investigated by means of a regularization procedure consisting in introducing a small stochastic diffusive term, that corresponds to a vanishing viscosity. In contrast with deterministic regularization, in which a cutoff interaction selects in the limit a single trajectory of the system after collapse, the zero-noise method produces a probability distribution supported by trajectories satisfying relevant conservation laws of the point vortex system.

Zero-noise dynamics after collapse for three point vortices

Grotto F.
;
Romito M.;
2024-01-01

Abstract

The continuation of point vortex dynamics after a vortex collapse is investigated by means of a regularization procedure consisting in introducing a small stochastic diffusive term, that corresponds to a vanishing viscosity. In contrast with deterministic regularization, in which a cutoff interaction selects in the limit a single trajectory of the system after collapse, the zero-noise method produces a probability distribution supported by trajectories satisfying relevant conservation laws of the point vortex system.
2024
Grotto, F.; Romito, M.; Viviani, M.
File in questo prodotto:
File Dimensione Formato  
PhysicaD_457_133947.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1211749
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact