Hydrogen energy applications often require that systems are used indoors (e.g., industrial trucks for materials handling in a warehouse facility, fuel cells located in a room, or hydrogen stored and distributed from a gas cabinet). It may also be necessary or desirable to locate some hydrogen system components/equipment inside indoor or outdoor enclosures for security or safety reasons, to isolate them from the end-user and the public, or from weather conditions.Using of hydrogen in confined environments requires detailed assessments of hazards and associated risks, including potential risk prevention and mitigation features. The release of hydrogen can potentially lead to the accumulation of hydrogen and the formation of a flammable hydrogen-air mixture, or can result in jet-fires. Within Hyindoor European Project, carried out for the EU Fuel Cells and Hydrogen Joint Undertaking safety design guidelines and engineering tools have been developed to prevent and mitigate hazardous consequences of hydrogen release in confined environments. Three main areas are considered: Hydrogen release conditions and accumulation, vented deflagrations, jet fires and including under-ventilated flame regimes (e.g., extinguishment or oscillating flames and steady burns). Potential RCS recommendations are also identified. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Guidelines and recommendations for indoor use of fuel cells and hydrogen systems

Melideo D.;
2017-01-01

Abstract

Hydrogen energy applications often require that systems are used indoors (e.g., industrial trucks for materials handling in a warehouse facility, fuel cells located in a room, or hydrogen stored and distributed from a gas cabinet). It may also be necessary or desirable to locate some hydrogen system components/equipment inside indoor or outdoor enclosures for security or safety reasons, to isolate them from the end-user and the public, or from weather conditions.Using of hydrogen in confined environments requires detailed assessments of hazards and associated risks, including potential risk prevention and mitigation features. The release of hydrogen can potentially lead to the accumulation of hydrogen and the formation of a flammable hydrogen-air mixture, or can result in jet-fires. Within Hyindoor European Project, carried out for the EU Fuel Cells and Hydrogen Joint Undertaking safety design guidelines and engineering tools have been developed to prevent and mitigate hazardous consequences of hydrogen release in confined environments. Three main areas are considered: Hydrogen release conditions and accumulation, vented deflagrations, jet fires and including under-ventilated flame regimes (e.g., extinguishment or oscillating flames and steady burns). Potential RCS recommendations are also identified. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
2017
Fuster, B.; Houssin-Agbomson, D.; Jallais, S.; Vyazmina, E.; Dang-Nhu, G.; Bernard-Michel, G.; Kuznetsov, M.; Molkov, V.; Chernyavskiy, B.; Shentsov, V.; Makarov, D.; Dey, R.; Hooker, P.; Baraldi, D.; Weidner, E.; Melideo, D.; Palmisano, V.; Venetsanos, A.; Der Kinderen, J.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1212484
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 18
social impact