Purpose: AL2106 is a new medical device based on a mixture of chondroitin sulphate in a xyloglucan and glycerol solution made to maximize its bioadhesive capability to the esophageal mucosa. The aim of the present study was twofold to evaluate the AL2106 protective effect on the esophageal mucosa when exposed to an acidic solution mimicking gastric reflux and to assess the resilience of this effect to saline washing. Materials and Methods: A porcine ex vivo model was used and the effects of the new medical device were compared to a sodium alginate suspension (SAS) already present on the market which was assumed as reference. Mucosal damage was induced in 19 porcine esophagi by perfusion with an acidic solution added with pepsin, and Evans blue dye (EBD) tissue uptake was used as an indicator of mucosal permeability. The EBD penetration, expressed as EBD µg/g of dry tissue, was assessed in specimens of untreated damaged mucosa and in specimens treated with AL2106 or SAS. The same evaluation was carried out after washing with normal saline. Results: Both topical agents tested significantly reduced the EBD uptake by more than 60% (AL2106 8.4±4.5, SAS 3.6±2.7 vs control 23.2±13.1, p<0.01). The saline washing did not cause any significant reduction in the protective effect of AL2106 (8.6±5.9), while it significantly reduced that of SAS (5.9±4.3, p<0.05). Conclusion: The new AL2106 medical device showed a good barrier effect against a reflux-like damaging solution and preserved this effect after the mucosal washing test, thus suggesting its possible relevance for the treatment of gastroesophageal reflux disease.

Barrier effect of a new topical agent on damaged esophageal mucosa: Experimental study on an ex vivo swine model

Elmi A.;
2020-01-01

Abstract

Purpose: AL2106 is a new medical device based on a mixture of chondroitin sulphate in a xyloglucan and glycerol solution made to maximize its bioadhesive capability to the esophageal mucosa. The aim of the present study was twofold to evaluate the AL2106 protective effect on the esophageal mucosa when exposed to an acidic solution mimicking gastric reflux and to assess the resilience of this effect to saline washing. Materials and Methods: A porcine ex vivo model was used and the effects of the new medical device were compared to a sodium alginate suspension (SAS) already present on the market which was assumed as reference. Mucosal damage was induced in 19 porcine esophagi by perfusion with an acidic solution added with pepsin, and Evans blue dye (EBD) tissue uptake was used as an indicator of mucosal permeability. The EBD penetration, expressed as EBD µg/g of dry tissue, was assessed in specimens of untreated damaged mucosa and in specimens treated with AL2106 or SAS. The same evaluation was carried out after washing with normal saline. Results: Both topical agents tested significantly reduced the EBD uptake by more than 60% (AL2106 8.4±4.5, SAS 3.6±2.7 vs control 23.2±13.1, p<0.01). The saline washing did not cause any significant reduction in the protective effect of AL2106 (8.6±5.9), while it significantly reduced that of SAS (5.9±4.3, p<0.05). Conclusion: The new AL2106 medical device showed a good barrier effect against a reflux-like damaging solution and preserved this effect after the mucosal washing test, thus suggesting its possible relevance for the treatment of gastroesophageal reflux disease.
2020
Salaroli, R.; Ventrella, D.; Bernardini, C.; Elmi, A.; Zannoni, A.; Bacci, M. L.; Forni, M.; Calanni, F.; Ferrieri, A.; Baldi, F.
File in questo prodotto:
File Dimensione Formato  
Salaroli et al.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 4.68 MB
Formato Adobe PDF
4.68 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1213877
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact