Natural polymers, thanks to their intrinsic biocompatibility and biomimicry, have been largely investigated as scaffold materials for tissue engineering applications. Traditional scaffold fabrication methods present several limitations, such as the use of organic solvents, the obtainment of a non-homogeneous structure, the variability in pore size and the lack of pore interconnectivity. These drawbacks can be overcome using innovative and more advanced production techniques based on the use of microfluidic platforms. Droplet microfluidics and microfluidic spinning techniques have recently found applications in the field of tissue engineering to produce microparticles and microfibers that can be used as scaffolds or as building blocks for three-dimensional structures. Compared to standard fabrication technologies, microfluidics-based ones offer several advantages, such as the possibility of obtaining particles and fibers with uniform dimensions. Thus, scaffolds with extremely precise geometry, pore distribution, pore interconnectivity and a uniform pores size can be obtained. Microfluidics can also represent a cheaper manufacturing technique. In this review, the microfluidic fabrication of microparticles, microfibers and three-dimensional scaffolds based on natural polymers will be illustrated. An overview of their applications in different tissue engineering fields will also be provided.

Microfluidic Fabrication of Natural Polymer-Based Scaffolds for Tissue Engineering Applications: A Review

Rosellini, Elisabetta
Primo
;
Cascone, Maria Grazia
2023-01-01

Abstract

Natural polymers, thanks to their intrinsic biocompatibility and biomimicry, have been largely investigated as scaffold materials for tissue engineering applications. Traditional scaffold fabrication methods present several limitations, such as the use of organic solvents, the obtainment of a non-homogeneous structure, the variability in pore size and the lack of pore interconnectivity. These drawbacks can be overcome using innovative and more advanced production techniques based on the use of microfluidic platforms. Droplet microfluidics and microfluidic spinning techniques have recently found applications in the field of tissue engineering to produce microparticles and microfibers that can be used as scaffolds or as building blocks for three-dimensional structures. Compared to standard fabrication technologies, microfluidics-based ones offer several advantages, such as the possibility of obtaining particles and fibers with uniform dimensions. Thus, scaffolds with extremely precise geometry, pore distribution, pore interconnectivity and a uniform pores size can be obtained. Microfluidics can also represent a cheaper manufacturing technique. In this review, the microfluidic fabrication of microparticles, microfibers and three-dimensional scaffolds based on natural polymers will be illustrated. An overview of their applications in different tissue engineering fields will also be provided.
2023
Rosellini, Elisabetta; Cascone, Maria Grazia
File in questo prodotto:
File Dimensione Formato  
2023_review_microfluidica.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 5.14 MB
Formato Adobe PDF
5.14 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1214512
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact