We give a new proof of the scattering below the ground state energy level for a class of nonlinear Schrödinger equations (NLS) with mass-energy intercritical competing nonlinearities. Specifically, the NLS has a focusing leading order nonlinearity with a defocusing perturbation. Our strategy combines interaction Morawetz estimates à la Dodson–Murphy and a new crucial bound for the Pohozaev functional of localized functions, which is essential to overcome the lack of a monotonicity condition. Furthermore, we give the rate of blow-up for symmetric solutions.

Scattering for non-radial 3D NLS with combined nonlinearities: the interaction Morawetz approach

JACOPO BELLAZZINI;LUIGI FORCELLA
2024-01-01

Abstract

We give a new proof of the scattering below the ground state energy level for a class of nonlinear Schrödinger equations (NLS) with mass-energy intercritical competing nonlinearities. Specifically, the NLS has a focusing leading order nonlinearity with a defocusing perturbation. Our strategy combines interaction Morawetz estimates à la Dodson–Murphy and a new crucial bound for the Pohozaev functional of localized functions, which is essential to overcome the lack of a monotonicity condition. Furthermore, we give the rate of blow-up for symmetric solutions.
2024
Bellazzini, Jacopo; DUONG DINH, Van; Forcella, Luigi
File in questo prodotto:
File Dimensione Formato  
23m1559063.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 587.19 kB
Formato Adobe PDF
587.19 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2209.01600v2.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 393.42 kB
Formato Adobe PDF
393.42 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1214807
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact