Purpose – The concept of productivity is central to performance management and decision-making, although it is complex and multifaceted. This paper aims to describe a methodology based on the use of Big Data in a cluster analysis combined with a data envelopment analysis (DEA) that provides accurate and reliable productivity measures in a large network of retailers. Design/methodology/approach – The methodology is described using a case study of a leading kitchen furniture producer. More specifically, Big Data is used in a two-step analysis prior to the DEA to automatically cluster a large number of retailers into groups that are homogeneous in terms of structural and environmental factors and assess a within-the-group level of productivity of the retailers. Findings – The proposed methodology helps reduce the heterogeneity among the units analysed, which is a major concern in DEA applications. The data-driven factorial and clustering technique allows for maximum within-group homogeneity and between-group heterogeneity by reducing subjective bias and dimensionality, which is embedded with the use of Big Data. Practical implications – The use of Big Data in clustering applied to productivity analysis can provide managers with data-driven information about the structural and socio-economic characteristics of retailers’ catchment areas, which is important in establishing potential productivity performance and optimizing resource allocation. The improved productivity indexes enable the setting of targets that are coherent with retailers’ potential, which increases motivation and commitment. Originality/value – This article proposes an innovative technique to enhance the accuracy of productivity measures through the use of Big Data clustering and DEA. To the best of the authors’ knowledge, no attempts have been made to benefit from the use of Big Data in the literature on retail store productivity.

Using Big Data to enhance data envelopment analysis of retail store productivity

Nicola Castellano
;
Roberto Del Gobbo;Lorenzo Leto
2023-01-01

Abstract

Purpose – The concept of productivity is central to performance management and decision-making, although it is complex and multifaceted. This paper aims to describe a methodology based on the use of Big Data in a cluster analysis combined with a data envelopment analysis (DEA) that provides accurate and reliable productivity measures in a large network of retailers. Design/methodology/approach – The methodology is described using a case study of a leading kitchen furniture producer. More specifically, Big Data is used in a two-step analysis prior to the DEA to automatically cluster a large number of retailers into groups that are homogeneous in terms of structural and environmental factors and assess a within-the-group level of productivity of the retailers. Findings – The proposed methodology helps reduce the heterogeneity among the units analysed, which is a major concern in DEA applications. The data-driven factorial and clustering technique allows for maximum within-group homogeneity and between-group heterogeneity by reducing subjective bias and dimensionality, which is embedded with the use of Big Data. Practical implications – The use of Big Data in clustering applied to productivity analysis can provide managers with data-driven information about the structural and socio-economic characteristics of retailers’ catchment areas, which is important in establishing potential productivity performance and optimizing resource allocation. The improved productivity indexes enable the setting of targets that are coherent with retailers’ potential, which increases motivation and commitment. Originality/value – This article proposes an innovative technique to enhance the accuracy of productivity measures through the use of Big Data clustering and DEA. To the best of the authors’ knowledge, no attempts have been made to benefit from the use of Big Data in the literature on retail store productivity.
2023
Castellano, Nicola; DEL GOBBO, Roberto; Leto, Lorenzo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1214809
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact