This article presents a two-times interleaved, loop-unrolled SAR analog-to-digital converter (ADC) operational from 300 down to 4.2 K. The 6-8-bit resolution and the sampling speed up to 1 GS/s are targeted at digitizing the multi-channel frequency-multiplexed input in a spin-qubit reflectometry readout for quantum computing. To optimize the circuit for the altered device behavior at cryogenic temperatures, a modified common-mode switching scheme is adopted as well as a flexible calibration. The design is implemented in 40-nm CMOS technology and achieves 36.2-dB signal to noise and distortion ratio (SNDR) for Nyquist input at 4.2 K while maintaining a Walden figure of merit (FOM textsubscript W) of 200 pJ/conv-step (for a 10.8-mW power consumption), including the clock receiver, and 15 pJ/conv-step (for a 0.8-mW power consumption) for just the core ADC. With these specifications, the ADC can support the simultaneous readout of 20 qubit channels with a power consumption of 0.5 mW/qubit, thus advancing toward the full integration of the cryogenic readout for future large-scale quantum processors.

A 1-GS/s 6-8-b Cryo-CMOS SAR ADC for Quantum Computing

Catania A.;Bruschi P.;
2023-01-01

Abstract

This article presents a two-times interleaved, loop-unrolled SAR analog-to-digital converter (ADC) operational from 300 down to 4.2 K. The 6-8-bit resolution and the sampling speed up to 1 GS/s are targeted at digitizing the multi-channel frequency-multiplexed input in a spin-qubit reflectometry readout for quantum computing. To optimize the circuit for the altered device behavior at cryogenic temperatures, a modified common-mode switching scheme is adopted as well as a flexible calibration. The design is implemented in 40-nm CMOS technology and achieves 36.2-dB signal to noise and distortion ratio (SNDR) for Nyquist input at 4.2 K while maintaining a Walden figure of merit (FOM textsubscript W) of 200 pJ/conv-step (for a 10.8-mW power consumption), including the clock receiver, and 15 pJ/conv-step (for a 0.8-mW power consumption) for just the core ADC. With these specifications, the ADC can support the simultaneous readout of 20 qubit channels with a power consumption of 0.5 mW/qubit, thus advancing toward the full integration of the cryogenic readout for future large-scale quantum processors.
2023
Kiene, G.; Overwater, R. W. J.; Catania, A.; Sreenivasulu, A. G.; Bruschi, P.; Charbon, E.; Babaie, M.; Sebastiano, F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1215495
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact