: We present a new measurement of the positive muon magnetic anomaly, a_{μ}≡(g_{μ}-2)/2, from the Fermilab Muon g-2 Experiment using data collected in 2019 and 2020. We have analyzed more than 4 times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of 2 due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, ω[over ˜]_{p}^{'}, and of the anomalous precession frequency corrected for beam dynamics effects, ω_{a}. From the ratio ω_{a}/ω[over ˜]_{p}^{'}, together with precisely determined external parameters, we determine a_{μ}=116 592 057(25)×10^{-11} (0.21 ppm). Combining this result with our previous result from the 2018 data, we obtain a_{μ}(FNAL)=116 592 055(24)×10^{-11} (0.20 ppm). The new experimental world average is a_{μ}(exp)=116 592 059(22)×10^{-11} (0.19 ppm), which represents a factor of 2 improvement in precision.

Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm

Bottalico, E;Driutti, A;Galati, M D;Gioiosa, A;Girotti, P;Incagli, M;Pilato, R N;Venanzoni, G;
2023-01-01

Abstract

: We present a new measurement of the positive muon magnetic anomaly, a_{μ}≡(g_{μ}-2)/2, from the Fermilab Muon g-2 Experiment using data collected in 2019 and 2020. We have analyzed more than 4 times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of 2 due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, ω[over ˜]_{p}^{'}, and of the anomalous precession frequency corrected for beam dynamics effects, ω_{a}. From the ratio ω_{a}/ω[over ˜]_{p}^{'}, together with precisely determined external parameters, we determine a_{μ}=116 592 057(25)×10^{-11} (0.21 ppm). Combining this result with our previous result from the 2018 data, we obtain a_{μ}(FNAL)=116 592 055(24)×10^{-11} (0.20 ppm). The new experimental world average is a_{μ}(exp)=116 592 059(22)×10^{-11} (0.19 ppm), which represents a factor of 2 improvement in precision.
2023
Aguillard, D P; Albahri, T; Allspach, D; Anisenkov, A; Badgley, K; Baeßler, S; Bailey, I; Bailey, L; Baranov, V A; Barlas-Yucel, E; Barrett, T; Barzi, E; Bedeschi, F; Berz, M; Bhattacharya, M; Binney, H P; Bloom, P; Bono, J; Bottalico, E; Bowcock, T; Braun, S; Bressler, M; Cantatore, G; Carey, R M; Casey, B C K; Cauz, D; Chakraborty, R; Chapelain, A; Chappa, S; Charity, S; Chen, C; Cheng, M; Chislett, R; Chu, Z; Chupp, T E; Claessens, C; Convery, M E; Corrodi, S; Cotrozzi, L; Crnkovic, J D; Dabagov, S; Debevec, P T; Di Falco, S; Di Sciascio, G; Drendel, B; Driutti, A; Duginov, V N; Eads, M; Edmonds, A; Esquivel, J; Farooq, M; Fatemi, R; Ferrari, C; Fertl, M; Fienberg, A T; Fioretti, A; Flay, D; Foster, S B; Friedsam, H; Froemming, N S; Gabbanini, C; Gaines, I; Galati, M D; Ganguly, S; Garcia, A; George, J; Gibbons, L K; Gioiosa, A; Giovanetti, K L; Girotti, P; Gohn, W; Goodenough, L; Gorringe, T; Grange, J; Grant, S; Gray, F; Haciomeroglu, S; Halewood-Leagas, T; Hampai, D; Han, F; Hempstead, J; Hertzog, D W; Hesketh, G; Hess, E; Hibbert, A; Hodge, Z; Hong, K W; Hong, R; Hu, T; Hu, Y; Iacovacci, M; Incagli, M; Kammel, P; Kargiantoulakis, M; Karuza, M; Kaspar, J; Kawall, D; Kelton, L; Keshavarzi, A; Kessler, D S; Khaw, K S; Khechadoorian, Z; Khomutov, N V; Kiburg, B; Kiburg, M; Kim, O; Kinnaird, N; Kraegeloh, E; Krylov, V A; Kuchinskiy, N A; Labe, K R; Labounty, J; Lancaster, M; Lee, S; Li, B; Li, D; Li, L; Logashenko, I; Lorente Campos, A; Lu, Z; Lucà, A; Lukicov, G; Lusiani, A; Lyon, A L; Maccoy, B; Madrak, R; Makino, K; Mastroianni, S; Miller, J P; Miozzi, S; Mitra, B; Morgan, J P; Morse, W M; Mott, J; Nath, A; Ng, J K; Nguyen, H; Oksuzian, Y; Omarov, Z; Osofsky, R; Park, S; Pauletta, G; Piacentino, G M; Pilato, R N; Pitts, K T; Plaster, B; Počanić, D; Pohlman, N; Polly, C C; Price, J; Quinn, B; Qureshi, M U H; Ramachandran, S; Ramberg, E; Reimann, R; Roberts, B L; Rubin, D L; Santi, L; Schlesier, C; Schreckenberger, A; Semertzidis, Y K; Shemyakin, D; Sorbara, M; Stöckinger, D; Stapleton, J; Still, D; Stoughton, C; Stratakis, D; Swanson, H E; Sweetmore, G; Sweigart, D A; Syphers, M J; Tarazona, D A; Teubner, T; Tewsley-Booth, A E; Tishchenko, V; Tran, N H; Turner, W; Valetov, E; Vasilkova, D; Venanzoni, G; Volnykh, V P; Walton, T; Weisskopf, A; Welty-Rieger, L; Winter, P; Wu, Y; Yu, B; Yucel, M; Zeng, Y; Zhang, C
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1215611
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact