In this article, we prove a new general identity involving the Theta operators introduced by the first author, Iraci, and Vanden Wyngaerd [Adv. Math. 376 (2021), p.59]. From this result, we can easily deduce several new identities that have combinatorial consequences in the study of Macdonald polynomials and diagonal coinvariants. In particular, we provide a unifying framework from which we recover many identities scattered in the literature, often resulting in drastically shorter proofs.

New identities for theta operators

D'Adderio M.;
2023-01-01

Abstract

In this article, we prove a new general identity involving the Theta operators introduced by the first author, Iraci, and Vanden Wyngaerd [Adv. Math. 376 (2021), p.59]. From this result, we can easily deduce several new identities that have combinatorial consequences in the study of Macdonald polynomials and diagonal coinvariants. In particular, we provide a unifying framework from which we recover many identities scattered in the literature, often resulting in drastically shorter proofs.
2023
D'Adderio, M.; Romero, M.
File in questo prodotto:
File Dimensione Formato  
identities_TAMS.pdf

non disponibili

Descrizione: Versione finale editoriale
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 395.74 kB
Formato Adobe PDF
395.74 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
ThetaIdentities.pdf

accesso aperto

Descrizione: Versione post-print
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 569.99 kB
Formato Adobe PDF
569.99 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1215787
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 2
social impact