Decision trees are among the most popular supervised mod- els due to their interpretability and knowledge representation resembling human reasoning. Commonly-used decision tree induction algorithms are based on greedy top-down strategies. Although these approaches are known to be an efficient heuris- tic, the resulting trees are only locally optimal and tend to have overly complex structures. On the other hand, optimal decision tree algorithms attempt to create an entire decision tree at once to achieve global optimality. We place our proposal between these approaches by designing a generative model for deci- sion trees. Our method first learns a latent decision tree space through a variational architecture using pre-trained decision tree models. Then, it adopts a genetic procedure to explore such latent space to find a compact decision tree with good predictive performance. We compare our proposal against clas- sical tree induction methods, optimal approaches, and ensem- ble models. The results show that our proposal can generate accurate and shallow, i.e., interpretable, decision trees.

Generative Model for Decision Trees

Riccardo Guidotti
Primo
;
Anna Monreale
Secondo
;
Mattia Setzu
Penultimo
;
In corso di stampa

Abstract

Decision trees are among the most popular supervised mod- els due to their interpretability and knowledge representation resembling human reasoning. Commonly-used decision tree induction algorithms are based on greedy top-down strategies. Although these approaches are known to be an efficient heuris- tic, the resulting trees are only locally optimal and tend to have overly complex structures. On the other hand, optimal decision tree algorithms attempt to create an entire decision tree at once to achieve global optimality. We place our proposal between these approaches by designing a generative model for deci- sion trees. Our method first learns a latent decision tree space through a variational architecture using pre-trained decision tree models. Then, it adopts a genetic procedure to explore such latent space to find a compact decision tree with good predictive performance. We compare our proposal against clas- sical tree induction methods, optimal approaches, and ensem- ble models. The results show that our proposal can generate accurate and shallow, i.e., interpretable, decision trees.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1215909
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact