Decision trees are among the most popular supervised models due to their interpretability and knowledge representation resembling human reasoning. Commonly-used decision tree induction algorithms are based on greedy top-down strategies. Although these approaches are known to be an efficient heuristic, the resulting trees are only locally optimal and tend to have overly complex structures. On the other hand, optimal decision tree algorithms attempt to create an entire decision tree at once to achieve global optimality. We place our proposal between these approaches by designing a generative model for decision trees. Our method first learns a latent decision tree space through a variational architecture using pre-trained decision tree models. Then, it adopts a genetic procedure to explore such latent space to find a compact decision tree with good predictive performance. We compare our proposal against classical tree induction methods, optimal approaches, and ensemble models. The results show that our proposal can generate accurate and shallow, i.e., interpretable, decision trees.

Generative Model for Decision Trees

Riccardo Guidotti
Primo
;
Anna Monreale
Secondo
;
Mattia Setzu
Penultimo
;
2024-01-01

Abstract

Decision trees are among the most popular supervised models due to their interpretability and knowledge representation resembling human reasoning. Commonly-used decision tree induction algorithms are based on greedy top-down strategies. Although these approaches are known to be an efficient heuristic, the resulting trees are only locally optimal and tend to have overly complex structures. On the other hand, optimal decision tree algorithms attempt to create an entire decision tree at once to achieve global optimality. We place our proposal between these approaches by designing a generative model for decision trees. Our method first learns a latent decision tree space through a variational architecture using pre-trained decision tree models. Then, it adopts a genetic procedure to explore such latent space to find a compact decision tree with good predictive performance. We compare our proposal against classical tree induction methods, optimal approaches, and ensemble models. The results show that our proposal can generate accurate and shallow, i.e., interpretable, decision trees.
2024
978-1-57735-887-9
File in questo prodotto:
File Dimensione Formato  
AAAI_2024___GenTree.pdf

Open Access dal 09/01/2024

Tipologia: Documento in Pre-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.75 MB
Formato Adobe PDF
2.75 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1215909
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact