The Hamiltonian cycle problem (HCP), which is an NP-complete problem, consists of having a graph G with nodes and m edges and finding the path that connects each node exactly once. In this paper we compare some algorithms to solve a Hamiltonian cycle problem, using different models of computations and especially the probabilistic and quantum ones. Starting from the classical probabilistic approach of random walks, we take a step to the quantum direction by involving an ad hoc designed Quantum Turing Machine (QTM), which can be a useful conceptual project tool for quantum algorithms. Introducing several constraints to the graphs, our analysis leads to not-exponential speedup improvements to the best-known algorithms. In particular, the results are based on bounded degree graphs (graphs with nodes having a maximum number of edges) and graphs with the right limited number of nodes and edges to allow them to outperform the other algorithms.

Comparison among Classical, Probabilistic and Quantum Algorithms for Hamiltonian Cycle problem

Vittoria Stanzione
2023-01-01

Abstract

The Hamiltonian cycle problem (HCP), which is an NP-complete problem, consists of having a graph G with nodes and m edges and finding the path that connects each node exactly once. In this paper we compare some algorithms to solve a Hamiltonian cycle problem, using different models of computations and especially the probabilistic and quantum ones. Starting from the classical probabilistic approach of random walks, we take a step to the quantum direction by involving an ad hoc designed Quantum Turing Machine (QTM), which can be a useful conceptual project tool for quantum algorithms. Introducing several constraints to the graphs, our analysis leads to not-exponential speedup improvements to the best-known algorithms. In particular, the results are based on bounded degree graphs (graphs with nodes having a maximum number of edges) and graphs with the right limited number of nodes and edges to allow them to outperform the other algorithms.
2023
Corrente, Giuseppe; Vincenzo Stanzione, Carlo; Stanzione, Vittoria
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1216067
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact