One-sided heavy tailed distributions have been used in many engineering applications, ranging from teletraffic modelling to financial engineering. In practice, the most interesting heavy tailed distributions are those having a finite mean and a diverging variance. The LogNormal distribution is sometimes discarded from modelling heavy tailed phenomena because it has a finite variance, even when it seems the most appropriate one to fit the data. In this work we provide for the first time a LogNormal distribution having a finite mean and a variance which converges to a well-defined infinite value. This is possible thanks to the use of Non-Standard Analysis. In particular, we have been able to obtain a Non-Standard LogNormal distribution, for which it is possible to numerically and experimentally verify whether the expected mean and variance of a set of generated pseudo-random numbers agree with the theoretical ones. Moreover, such a check would be much more cumbersome (and sometimes even impossible) when considering heavy tailed distributions in the traditional framework of standard analysis.

Modelling Heavy Tailed Phenomena Using a LogNormal Distribution Having a Numerically Verifiable Infinite Variance

Cococcioni M.
;
Fiorini F.;Pagano M.
2023-01-01

Abstract

One-sided heavy tailed distributions have been used in many engineering applications, ranging from teletraffic modelling to financial engineering. In practice, the most interesting heavy tailed distributions are those having a finite mean and a diverging variance. The LogNormal distribution is sometimes discarded from modelling heavy tailed phenomena because it has a finite variance, even when it seems the most appropriate one to fit the data. In this work we provide for the first time a LogNormal distribution having a finite mean and a variance which converges to a well-defined infinite value. This is possible thanks to the use of Non-Standard Analysis. In particular, we have been able to obtain a Non-Standard LogNormal distribution, for which it is possible to numerically and experimentally verify whether the expected mean and variance of a set of generated pseudo-random numbers agree with the theoretical ones. Moreover, such a check would be much more cumbersome (and sometimes even impossible) when considering heavy tailed distributions in the traditional framework of standard analysis.
2023
Cococcioni, M.; Fiorini, F.; Pagano, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1216554
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact