We present the results of the first Dalitz plot analysis of the decay D0→K−π+η. The analysis is performed on a data set corresponding to an integrated luminosity of 953 fb−1 collected by the Belle detector at the asymmetric-energy e+e− KEKB collider. The Dalitz plot is well described by a combination of the six resonant decay channels K¯∗(892)0η, K−a0(980)+, K−a2(1320)+, K¯∗(1410)0η, K∗(1680)−π+ and K∗2(1980)−π+, together with Kπ and Kη S-wave components. The decays K∗(1680)−→K−η and K∗2(1980)−→K−η are observed for the first time. We measure ratio of the branching fractions, B(D0→K−π+η)/B(D0→K−π+)=0.500±0.002(stat)±0.020(syst)±0.003(BPDG). Using the Dalitz fit result, the ratio B(K∗(1680)→Kη)B(K∗(1680)→Kπ) is measured to be 0.11±0.02(stat)+0.06−0.04(syst)±0.04(BPDG); this is much lower than the theoretical expectations (≈1) made under the assumption that K∗(1680) is a pure 13D1 state. The product branching fraction B(D0→[K∗2(1980)−→K−η]π+)=(2.2+1.7−1.9)×10−4 is determined. In addition, the πη′ contribution to the a0(980)± resonance shape is confirmed with 10.1σ statistical significance using the three-channel Flatté model. We also measure B(D0→K¯∗(892)0η)=(1.41+0.13−0.12)%. This is consistent with, and more precise than, the current world average (1.02±0.30)%, deviates with a significance of more than 3σ from the theoretical predictions of (0.51-0.92)%.

Dalitz analysis of D⁰→K−π+η decays at Belle

A. Giri;F. Tenchini;
2020-01-01

Abstract

We present the results of the first Dalitz plot analysis of the decay D0→K−π+η. The analysis is performed on a data set corresponding to an integrated luminosity of 953 fb−1 collected by the Belle detector at the asymmetric-energy e+e− KEKB collider. The Dalitz plot is well described by a combination of the six resonant decay channels K¯∗(892)0η, K−a0(980)+, K−a2(1320)+, K¯∗(1410)0η, K∗(1680)−π+ and K∗2(1980)−π+, together with Kπ and Kη S-wave components. The decays K∗(1680)−→K−η and K∗2(1980)−→K−η are observed for the first time. We measure ratio of the branching fractions, B(D0→K−π+η)/B(D0→K−π+)=0.500±0.002(stat)±0.020(syst)±0.003(BPDG). Using the Dalitz fit result, the ratio B(K∗(1680)→Kη)B(K∗(1680)→Kπ) is measured to be 0.11±0.02(stat)+0.06−0.04(syst)±0.04(BPDG); this is much lower than the theoretical expectations (≈1) made under the assumption that K∗(1680) is a pure 13D1 state. The product branching fraction B(D0→[K∗2(1980)−→K−η]π+)=(2.2+1.7−1.9)×10−4 is determined. In addition, the πη′ contribution to the a0(980)± resonance shape is confirmed with 10.1σ statistical significance using the three-channel Flatté model. We also measure B(D0→K¯∗(892)0η)=(1.41+0.13−0.12)%. This is consistent with, and more precise than, the current world average (1.02±0.30)%, deviates with a significance of more than 3σ from the theoretical predictions of (0.51-0.92)%.
2020
Chen, Y.  Q.; Li, L.  K.; Yan, W.  B.; Adachi, I.; Aihara, H.; Al Said, S.; Asner, D.  M.; Atmacan, H.; Aulchenko, V.; Aushev, T.; Ayad, R.; Babu, V.; Badhrees, I.; Bahinipati, S.; Behera, P.; Bennett, J.; Bhardwaj, V.; Bilka, T.; Biswal, J.; Bozek, A.; Bračko, M.; Browder, T.  E.; Campajola, M.; Cao, L.; Červenkov, D.; Chang, M. -C.; Chekelian, V.; Chen, A.; Cheon, B.  G.; Chilikin, K.; Cho, H.  E.; Cho, K.; Choi, S. -K.; Choi, Y.; Choudhury, S.; Cinabro, D.; Cunliffe, S.; Dash, N.; De Nardo, G.; Di Capua, F.; Doležal, Z.; Dong, T.  V.; Eidelman, S.; Epifanov, D.; Fast, J.  E.; Ferber, T.; Ferlewicz, D.; Fulsom, B.  G.; Garg, R.; Gaur, V.; Gabyshev, N.; Garmash, A.; Giri, A.; Goldenzweig, P.; Golob, B.; Guan, Y.; Hartbrich, O.; Hayasaka, K.; Hayashii, H.; Hou, W. -S.; Hsu, C. -L.; Inami, K.; Inguglia, G.; Ishikawa, A.; Itoh, R.; Iwasaki, M.; Iwasaki, Y.; Jacobs, W.  W.; Jang, E. -J.; Jeon, H.  B.; Jia, S.; Jin, Y.; Joo, K.  K.; Kang, K.  H.; Karyan, G.; Kawasaki, T.; Kim, D.  Y.; Kim, S.  H.; Kimmel, T.  D.; Kinoshita, K.; Kodyš, P.; Korpar, S.; Križan, P.; Kroeger, R.; Krokovny, P.; Kuhr, T.; Kulasiri, R.; Kumar, R.; Kuzmin, A.; Kwon, Y. -J.; Lalwani, K.; Lange, J.  S.; Lee, I.  S.; Lee, S.  C.; Li, Y.  B.; Li Gioi, L.; Libby, J.; Lieret, K.; Liventsev, D.; Macnaughton, J.; Macqueen, C.; Masuda, M.; Matvienko, D.; Merola, M.; Miyabayashi, K.; Mizuk, R.; Mohanty, S.; Mrvar, M.; Mussa, R.; Nakao, M.; Natkaniec, Z.; Nayak, M.; Nishida, S.; Ogawa, S.; Ono, H.; Oskin, P.; Pakhlov, P.; Pakhlova, G.; Pardi, S.; Park, H.; Patra, S.; Paul, S.; Pedlar, T.  K.; Pestotnik, R.; Piilonen, L.  E.; Podobnik, T.; Popov, V.; Prencipe, E.; Prim, M.  T.; Rabusov, A.; Ritter, M.; Röhrken, M.; Rout, N.; Russo, G.; Sahoo, D.; Sakai, Y.; Sanuki, T.; Savinov, V.; Schneider, O.; Schnell, G.; Schueler, J.; Schwanda, C.; Schwartz, A.  J.; Seino, Y.; Senyo, K.; Sevior, M.  E.; Shapkin, M.; Shebalin, V.; Shiu, J. -G.; Sokolov, A.; Solovieva, E.; Starič, M.; Stottler, Z.  S.; Sumihama, M.; Sumiyoshi, T.; Sutcliffe, W.; Takizawa, M.; Tanida, K.; Tenchini, F.; Trabelsi, K.; Uchida, M.; Uglov, T.; Uno, S.; Urquijo, P.; Varner, G.; Vorobyev, V.; Waheed, E.; Wang, C.  H.; Wang, E.; Wang, M. -Z.; Wang, P.; Watanabe, M.; Won, E.; Xu, X.; Yang, S.  B.; Ye, H.; Yin, J.  H.; Yuan, C.  Z.; Yusa, Y.; Zhang, Z.  P.; Zhilich, V.; Zhukova, V.; Zhulanov, V.
File in questo prodotto:
File Dimensione Formato  
PhysRevD.102.012002.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 851.38 kB
Formato Adobe PDF
851.38 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1216749
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact