Linear systems with a tensor product structure arise naturally when considering the discretization of Laplace-type differential equations or, more generally, multidimensional operators with separable coefficients. In this work, we focus on the numerical solution of linear systems of the form (I ⊗ ⋅⋅⋅ ⊗ I ⊗ A₁+ ⋅⋅⋅+ Ad ⊗ I ⊗ ⋅⋅⋅ ⊗ I)x = b, where the matrices Aₜ ∈ ℝⁿ ͯ ⁿ are symmetric positive definite and belong to the class of hierarchically semiseparable matrices. We propose and analyze a nested divide-and-conquer scheme, based on the technology of low-rank updates, which attains the quasi-optimal computational cost ⁠O (n ͩ log (n)). Our theoretical analysis highlights the role of inexactness in the nested calls of our algorithm and provides worst case estimates for the amplification of the residual norm. The performances are validated on 2D and 3D case studies.

A nested divide-and-conquer method for tensor Sylvester equations with positive definite hierarchically semiseparable coefficients

Massei, Stefano;Robol, Leonardo
2023-01-01

Abstract

Linear systems with a tensor product structure arise naturally when considering the discretization of Laplace-type differential equations or, more generally, multidimensional operators with separable coefficients. In this work, we focus on the numerical solution of linear systems of the form (I ⊗ ⋅⋅⋅ ⊗ I ⊗ A₁+ ⋅⋅⋅+ Ad ⊗ I ⊗ ⋅⋅⋅ ⊗ I)x = b, where the matrices Aₜ ∈ ℝⁿ ͯ ⁿ are symmetric positive definite and belong to the class of hierarchically semiseparable matrices. We propose and analyze a nested divide-and-conquer scheme, based on the technology of low-rank updates, which attains the quasi-optimal computational cost ⁠O (n ͩ log (n)). Our theoretical analysis highlights the role of inexactness in the nested calls of our algorithm and provides worst case estimates for the amplification of the residual norm. The performances are validated on 2D and 3D case studies.
2023
Massei, Stefano; Robol, Leonardo
File in questo prodotto:
File Dimensione Formato  
drad089.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
paper.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 706.98 kB
Formato Adobe PDF
706.98 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1216816
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact