The paper addresses Kalman filtering over a peer-to-peer sensor network with a careful eye towards data transmission scheduling for reduced communication bandwidth and, consequently, enhanced energy efficiency and prolonged network lifetime. A novel consensus Kalman filter algorithm with event-triggered communication is developed by enforcing each node to transmit its local information to the neighbors only when this is considered as particularly significant for estimation purposes, in the sense that it notably deviates from the information that can be predicted from the last transmitted one. Further, it is proved how the filter guarantees stability (mean-square boundedness of the estimation error in each node) under network connectivity and system collective observability. Finally, numerical simulations are provided to demonstrate practical effectiveness of the distributed filter for trading off estimation performance versus transmission rate.
A distributed Kalman filter with event-triggered communication and guaranteed stability
Selvi D.
2018-01-01
Abstract
The paper addresses Kalman filtering over a peer-to-peer sensor network with a careful eye towards data transmission scheduling for reduced communication bandwidth and, consequently, enhanced energy efficiency and prolonged network lifetime. A novel consensus Kalman filter algorithm with event-triggered communication is developed by enforcing each node to transmit its local information to the neighbors only when this is considered as particularly significant for estimation purposes, in the sense that it notably deviates from the information that can be predicted from the last transmitted one. Further, it is proved how the filter guarantees stability (mean-square boundedness of the estimation error in each node) under network connectivity and system collective observability. Finally, numerical simulations are provided to demonstrate practical effectiveness of the distributed filter for trading off estimation performance versus transmission rate.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.