This chapter deals with linear regression problems for which one has the possibility of varying the supervision cost per example, by controlling the conditional variance of the output given the feature vector. For a fixed upper bound on the total available supervision cost, the trade-off between the number of training examples and their precision of supervision is investigated, using a nonasymptotic data-independent bound from the literature in statistical learning theory. This bound is related to the truncated output of the ordinary least squares regression algorithm. The results of the analysis are also compared theoretically with the ones obtained in a previous work, based on a large-sample approximation of the untruncated output of ordinary least squares. Advantages and disadvantages of the investigated approach are discussed.

A Statistical Learning Theory Approach for the Analysis of the Trade-off Between Sample Size and Precision in Truncated Ordinary Least Squares

Selvi D.
2022-01-01

Abstract

This chapter deals with linear regression problems for which one has the possibility of varying the supervision cost per example, by controlling the conditional variance of the output given the feature vector. For a fixed upper bound on the total available supervision cost, the trade-off between the number of training examples and their precision of supervision is investigated, using a nonasymptotic data-independent bound from the literature in statistical learning theory. This bound is related to the truncated output of the ordinary least squares regression algorithm. The results of the analysis are also compared theoretically with the ones obtained in a previous work, based on a large-sample approximation of the untruncated output of ordinary least squares. Advantages and disadvantages of the investigated approach are discussed.
2022
Gnecco, G.; Raciti, F.; Selvi, D.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1217055
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact