Antibodies play a vital role in the immune response to infectious diseases and can be administered passively to protect patients. In the case of Cryptococcus neoformans, a WHO critical priority fungal pathogen, infection results in antibodies targeting capsular glucuron-oxylo-mannan (GXM). These antibodies yield protective, non-protective, and disease-enhancing outcomes when administered passively. However, it was unknown how these distinct antibodies recognized their antigens at the molecular level, leading to the hypothesis that they may target different GXM epitopes. To test this hypothesis, we constructed a microarray containing 26 glycans representative of those found in highly virulent cryptococcal strains and utilized it to study 16 well-characterized monoclonal antibodies. Notably, we found that protective and non-protective antibodies shared conserved reactivity to the M2 motif of GXM, irrespective of the strain used in infection or GXM-isolated to produce a conjugate vaccine. Here, only two antibodies, 12A1 and 18B7, exhibited diverse trivalent GXM motif reactivity. IgG antibodies associated with protective responses showed cross-reactivity to at least two GXM motifs. This molecular understanding of antibody binding epitopes was used to map the antigenic diversity of two Cryptococcus neoformans strains, which revealed the exceptional complexity of fungal capsular polysaccharides. A multi-GXM motif vaccine holds the potential to effectively address this antigenic diversity. Collectively, these findings underscore the context-dependent nature of antibody function and challenge the classification of anti-GXM epitopes as either "protective" or "non-protective".

Synthetic Glycans Reveal Determinants of Antibody Functional Efficacy against a Fungal Pathogen

Guazzelli L.;
2023-01-01

Abstract

Antibodies play a vital role in the immune response to infectious diseases and can be administered passively to protect patients. In the case of Cryptococcus neoformans, a WHO critical priority fungal pathogen, infection results in antibodies targeting capsular glucuron-oxylo-mannan (GXM). These antibodies yield protective, non-protective, and disease-enhancing outcomes when administered passively. However, it was unknown how these distinct antibodies recognized their antigens at the molecular level, leading to the hypothesis that they may target different GXM epitopes. To test this hypothesis, we constructed a microarray containing 26 glycans representative of those found in highly virulent cryptococcal strains and utilized it to study 16 well-characterized monoclonal antibodies. Notably, we found that protective and non-protective antibodies shared conserved reactivity to the M2 motif of GXM, irrespective of the strain used in infection or GXM-isolated to produce a conjugate vaccine. Here, only two antibodies, 12A1 and 18B7, exhibited diverse trivalent GXM motif reactivity. IgG antibodies associated with protective responses showed cross-reactivity to at least two GXM motifs. This molecular understanding of antibody binding epitopes was used to map the antigenic diversity of two Cryptococcus neoformans strains, which revealed the exceptional complexity of fungal capsular polysaccharides. A multi-GXM motif vaccine holds the potential to effectively address this antigenic diversity. Collectively, these findings underscore the context-dependent nature of antibody function and challenge the classification of anti-GXM epitopes as either "protective" or "non-protective".
2023
Crawford, C. J.; Guazzelli, L.; Mcconnell, S. A.; Mccabe, O.; D'Errico, C.; Greengo, S. D.; Wear, M. P.; Jedlicka, A. E.; Casadevall, A.; Oscarson, S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1217295
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact