Given the consistent release of zinc oxide (ZnO) nanoparticles into the environment, it is urgent to study their impact on plants in depth. In this study, grains of rice were treated with two different concentrations of ZnO nanoparticles (NP-ZnO, 10 and 100 mg/L), and their bulk counterpart (B-ZnO) were used to evaluate whether ZnO action could depend on particle size. To test this hypothesis, root growth and development assessment, oxidative stress parameters, indole-3-acetic acid (IAA) content and molecules/enzymes involved in IAA metabolism were analyzed. In situ localization of Zn in control and treated roots was also performed. Though Zn was visible inside root cells only following nanoparticle treatment, both materials (NP-ZnO and B-ZnO) were able to affect seedling growth and root morphology, with alteration in the concentration/pattern of localization of oxidative stress markers and with a different action depending on particle size. In addition, only ZnO supplied as bulk material induced a significant increase in both IAA concentration and lateral root density, supporting our hypothesis that bulk particles might enhance lateral root development through the rise of IAA concentration. Apparently, IAA concentration was influenced more by the activity of the catabolic peroxidases than by the protective action of phenols.

Effects of Zinc Oxide Particles with Different Sizes on Root Development in Oryza sativa

Ruffini Castiglione, M
Co-primo
;
Bottega, S
Co-primo
;
Sorce, C
;
Spano', C
Ultimo
2023-01-01

Abstract

Given the consistent release of zinc oxide (ZnO) nanoparticles into the environment, it is urgent to study their impact on plants in depth. In this study, grains of rice were treated with two different concentrations of ZnO nanoparticles (NP-ZnO, 10 and 100 mg/L), and their bulk counterpart (B-ZnO) were used to evaluate whether ZnO action could depend on particle size. To test this hypothesis, root growth and development assessment, oxidative stress parameters, indole-3-acetic acid (IAA) content and molecules/enzymes involved in IAA metabolism were analyzed. In situ localization of Zn in control and treated roots was also performed. Though Zn was visible inside root cells only following nanoparticle treatment, both materials (NP-ZnO and B-ZnO) were able to affect seedling growth and root morphology, with alteration in the concentration/pattern of localization of oxidative stress markers and with a different action depending on particle size. In addition, only ZnO supplied as bulk material induced a significant increase in both IAA concentration and lateral root density, supporting our hypothesis that bulk particles might enhance lateral root development through the rise of IAA concentration. Apparently, IAA concentration was influenced more by the activity of the catabolic peroxidases than by the protective action of phenols.
2023
Ruffini Castiglione, M; Bottega, S; Sorce, C; Spano', C
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1672630823000641-main.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 3.06 MB
Formato Adobe PDF
3.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1218087
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact