Molecules that violate Hund’s rule and exhibit an inverted gap between the lowest singlet S1 and triplet T1 excited states have attracted considerable attention due to their potential applications in optoelectronics. Among these molecules, the triangular-shaped heptazine, and its derivatives, have been in the limelight. However, conflicting reports have arisen regarding the relative energies of S1 and T1. Here, we employ highly accurate levels of theory, such as CC3, to not only resolve the debate concerning the sign but also quantify the magnitude of the S1-T1 gap. We also determined the 0-0 energies to evaluate the significance of the vertical approximation. In addition, we compute reference S1-T1 gaps for a series of 10 related molecules. This enables us to benchmark lower-order methods for future applications in larger systems within the same family of compounds. This contribution can serve as a foundation for the design of triangular-shaped molecules with enhanced photophysical properties.
Heptazine, Cyclazine, and Related Compounds: Chemically-Accurate Estimates of the Inverted Singlet-Triplet Gap
Lipparini F.;
2023-01-01
Abstract
Molecules that violate Hund’s rule and exhibit an inverted gap between the lowest singlet S1 and triplet T1 excited states have attracted considerable attention due to their potential applications in optoelectronics. Among these molecules, the triangular-shaped heptazine, and its derivatives, have been in the limelight. However, conflicting reports have arisen regarding the relative energies of S1 and T1. Here, we employ highly accurate levels of theory, such as CC3, to not only resolve the debate concerning the sign but also quantify the magnitude of the S1-T1 gap. We also determined the 0-0 energies to evaluate the significance of the vertical approximation. In addition, we compute reference S1-T1 gaps for a series of 10 related molecules. This enables us to benchmark lower-order methods for future applications in larger systems within the same family of compounds. This contribution can serve as a foundation for the design of triangular-shaped molecules with enhanced photophysical properties.File | Dimensione | Formato | |
---|---|---|---|
JPCL_Heptazine_PP.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.17 MB
Formato
Adobe PDF
|
1.17 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.