In the next future, space agencies are planning to return to the Moon. The objective is to assemble an orbiting space station, called Gateway, on a Near Rectilinear Halo Orbit around the Moon as a base for future Moon and deep space missions. Within this framework, multiple side missions will be planned to sustain the Gateway (Artemis mission). The proposed work is thought in framework of the preliminary design of future cargo missions, in particular on the design of an efficient phasing trajectory, under the Circular Restricted Three body problem hypotheses, to bring a cargo vehicle from the end of the Earth-Moon transfer to the beginning of the proximity operations such as rendezvous and docking with the space station. The work aims covering the lack of literature in phasing trajectories with the NRHO by proposing three different strategies to connect the Earth-Moon transfer trajectory with the proximity operations. The three strategies are classified based on the choice of the parking orbits or the choice of the manifolds. Two strategies use butterfly and Halo orbits to park the vehicle before transferring to the target orbit. The third strategy, instead, uses manifolds to allow a direct phasing. In the paper, the three innovative strategies are designed and compare in a specific scenario.

Phasing with near rectilinear Halo orbits: Design and comparison

Bucchioni G.;
2023-01-01

Abstract

In the next future, space agencies are planning to return to the Moon. The objective is to assemble an orbiting space station, called Gateway, on a Near Rectilinear Halo Orbit around the Moon as a base for future Moon and deep space missions. Within this framework, multiple side missions will be planned to sustain the Gateway (Artemis mission). The proposed work is thought in framework of the preliminary design of future cargo missions, in particular on the design of an efficient phasing trajectory, under the Circular Restricted Three body problem hypotheses, to bring a cargo vehicle from the end of the Earth-Moon transfer to the beginning of the proximity operations such as rendezvous and docking with the space station. The work aims covering the lack of literature in phasing trajectories with the NRHO by proposing three different strategies to connect the Earth-Moon transfer trajectory with the proximity operations. The three strategies are classified based on the choice of the parking orbits or the choice of the manifolds. Two strategies use butterfly and Halo orbits to park the vehicle before transferring to the target orbit. The third strategy, instead, uses manifolds to allow a direct phasing. In the paper, the three innovative strategies are designed and compare in a specific scenario.
2023
Bucchioni, G.; Lizy-Destrez, S.; Vaujour, T.; Thoraval, V.; Rouverand, L.; Silva, C.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1218312
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact