This paper outlines the development of a microwave heated apparatus for the production of silicon carbide (SiC) based ceramic matrix composites via chemical vapor infiltration. An innovative pilot scale reactor was designed and built. A coupled thermal and electromagnetic model was developed in order to predict the temperature profile inside the reactor. The results obtained from the model demonstrated that the electric field inside the sample was constant. This fact is particularly important in order to prevent the thermal instabilities (run-aways) that are typical in the case of microwave heating. Therefore the heating was uniform with the aid of a mode stirrer that achieved a better distribution of the microwave power and then improved the process efficiency. The infiltration cycles were carried out on SiC fiber preforms and resulted in an excellent average weight increase with respect to the initial sample. By using microwave heating, the treatment times were considerably reduced with respect to the conventional process times reported in the literature. The microstructure of the SiC composites were observed by scanning the electron microscopy in order to evaluate the quality and the degree of densification which was achieved within the fiber tows. The SiC deposition inside of the sample was sufficiently homogeneous and compact, even if a certain degree of inter-tow porosity was still evident.

Modeling and development of a microwave heated pilot plant for the production of SiC-based ceramic matrix composites

LAZZERI, ANDREA;
2008-01-01

Abstract

This paper outlines the development of a microwave heated apparatus for the production of silicon carbide (SiC) based ceramic matrix composites via chemical vapor infiltration. An innovative pilot scale reactor was designed and built. A coupled thermal and electromagnetic model was developed in order to predict the temperature profile inside the reactor. The results obtained from the model demonstrated that the electric field inside the sample was constant. This fact is particularly important in order to prevent the thermal instabilities (run-aways) that are typical in the case of microwave heating. Therefore the heating was uniform with the aid of a mode stirrer that achieved a better distribution of the microwave power and then improved the process efficiency. The infiltration cycles were carried out on SiC fiber preforms and resulted in an excellent average weight increase with respect to the initial sample. By using microwave heating, the treatment times were considerably reduced with respect to the conventional process times reported in the literature. The microstructure of the SiC composites were observed by scanning the electron microscopy in order to evaluate the quality and the degree of densification which was achieved within the fiber tows. The SiC deposition inside of the sample was sufficiently homogeneous and compact, even if a certain degree of inter-tow porosity was still evident.
2008
Lazzeri, Andrea; B., Cioni
File in questo prodotto:
File Dimensione Formato  
IJCRE08.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione finale editoriale
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.34 MB
Formato Adobe PDF
3.34 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/121897
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact