Abstract: The ATLAS and CMS collaborations recently reported a mild excess in the diphoton final state pointing to a resonance with a mass of around 750 GeV and a potentially large width. We consider the possibility of a scalar resonance being produced via gluon fusion and decaying to electroweak gauge bosons, jets and pairs of invisible particles, stable at collider scales. We compute limits from monojet searches on such a resonance and test their compatibility with the requirement for a large width. We also study whether the stable particle can be a a dark matter candidate and investigate the corresponding relic density constraints along with the collider limits. We show that monojet searches rule out a large part of the available parameter space and point out scenarios where a broad diphoton resonance can be reconciled with monojet constraints.

One jet to rule them all: monojet constraints and invisible decays of a 750 GeV diphoton resonance

Barducci D.;
2016-01-01

Abstract

Abstract: The ATLAS and CMS collaborations recently reported a mild excess in the diphoton final state pointing to a resonance with a mass of around 750 GeV and a potentially large width. We consider the possibility of a scalar resonance being produced via gluon fusion and decaying to electroweak gauge bosons, jets and pairs of invisible particles, stable at collider scales. We compute limits from monojet searches on such a resonance and test their compatibility with the requirement for a large width. We also study whether the stable particle can be a a dark matter candidate and investigate the corresponding relic density constraints along with the collider limits. We show that monojet searches rule out a large part of the available parameter space and point out scenarios where a broad diphoton resonance can be reconciled with monojet constraints.
2016
Barducci, D.; Goudelis, A.; Kulkarni, S.; Sengupta, D.
File in questo prodotto:
File Dimensione Formato  
Barducci_OneJet_2016.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 4.29 MB
Formato Adobe PDF
4.29 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1219460
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 97
  • ???jsp.display-item.citation.isi??? 21
social impact