Abstract: In composite Higgs models (CHMs), electroweak precision data generically push colourless composite vector resonances to a regime where they dominantly decay into pairs of light top partners. This greatly attenuates their traces in canonical collider searches, tailored for narrow resonances promptly decaying into Standard Model final states. By reinterpreting the CMS same-sign dilepton (SS2ℓ) analysis at the Large Hadron Collider (LHC), originally designed to search for top partners with electric charge 5/3, we demonstrate its significant coverage over this kinematical regime. We also show the reach of the 13 TeV run of the LHC, with various integrated luminosity options, for a possible upgrade of the SS2ℓ search. The top sector of CHMs is found to be more fine-tuned in the presence of colourless composite resonances in the few TeV range.

Bounding wide composite vector resonances at the LHC

Barducci D.;
2016-01-01

Abstract

Abstract: In composite Higgs models (CHMs), electroweak precision data generically push colourless composite vector resonances to a regime where they dominantly decay into pairs of light top partners. This greatly attenuates their traces in canonical collider searches, tailored for narrow resonances promptly decaying into Standard Model final states. By reinterpreting the CMS same-sign dilepton (SS2ℓ) analysis at the Large Hadron Collider (LHC), originally designed to search for top partners with electric charge 5/3, we demonstrate its significant coverage over this kinematical regime. We also show the reach of the 13 TeV run of the LHC, with various integrated luminosity options, for a possible upgrade of the SS2ℓ search. The top sector of CHMs is found to be more fine-tuned in the presence of colourless composite resonances in the few TeV range.
2016
Barducci, D.; Delaunay, C.
File in questo prodotto:
File Dimensione Formato  
Barducci-Bounding wide composite_2016.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 520.73 kB
Formato Adobe PDF
520.73 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1219470
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact