Recently, progress in IR sources has led to the discovery that humans can detect infrared (IR) light. This is hypothesized to be due to the two-photon absorption (TPA) events promoting the retina dim-light rod photoreceptor rhodopsin to the same excited state populated via one-photon absorption (OPA). Here, we combine quantum mechanics/molecular mechanics and extended multiconfiguration quasi-degenerate perturbation theory calculations to simulate the TPA spectrum of bovine rhodopsin (Rh) as a model for the human photoreceptor. The results show that the TPA spectrum of Rh has an intense S-0 -> S-1 band but shows also S-0 -> S-2 and S-0 -> S-3 transitions whose intensities, relative to the S-0 -> S-1 band, are significantly increased when compared to the corresponding bands of the OPA spectrum. In conclusion, we show that IR light in the 950 nm region can be perceived by rod photoreceptors, thus supporting the two-photon origin of the IR perception. We also found that the same photoreceptor can perceive red (i.e., close to 680 nm) light provided that TPA induces population of S-2.

Multistate Multiconfiguration Quantum Chemical Computation of the Two-Photon Absorption Spectra of Bovine Rhodopsin

Pedraza-González, Laura;
2019-01-01

Abstract

Recently, progress in IR sources has led to the discovery that humans can detect infrared (IR) light. This is hypothesized to be due to the two-photon absorption (TPA) events promoting the retina dim-light rod photoreceptor rhodopsin to the same excited state populated via one-photon absorption (OPA). Here, we combine quantum mechanics/molecular mechanics and extended multiconfiguration quasi-degenerate perturbation theory calculations to simulate the TPA spectrum of bovine rhodopsin (Rh) as a model for the human photoreceptor. The results show that the TPA spectrum of Rh has an intense S-0 -> S-1 band but shows also S-0 -> S-2 and S-0 -> S-3 transitions whose intensities, relative to the S-0 -> S-1 band, are significantly increased when compared to the corresponding bands of the OPA spectrum. In conclusion, we show that IR light in the 950 nm region can be perceived by rod photoreceptors, thus supporting the two-photon origin of the IR perception. We also found that the same photoreceptor can perceive red (i.e., close to 680 nm) light provided that TPA induces population of S-2.
2019
Gholami, Samira; Pedraza-González, Laura; Yang, Xuchun; Granovsky, Alexander A.; Ioffe, Ilya N.; Olivucci, Massimo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1220227
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact