This article introduces Web-ARM, a specialized tool, online available, designed to build quantum mechanical/molecular mechanical models of rhodopsins, a widely spread family of light-responsive proteins. Web-ARM allows the rapidly building of models of rhodopsins with a documented quality and the prediction of trends in UV–vis absorption maximum wavelengths, based on their excitation energies computed at the CASPT2//CASSCF/Amber level of theory. Web-ARM builds upon the recently reported, python-based a-ARM protocol [J. Chem. Theory Comput., 2019, 15, 3134–3152] and, as such, necessitates only a crystallographic structure or a comparative model in PDB format and a very basic knowledge of the studied rhodopsin system. The user-friendly web interface uses such input to generate congruous, gas-phase models of rhodopsins and, if requested, their mutants. We present two possible applications of Web-ARM, which showcase how the interface can be employed to assist both research and educational activities in fields at the interface between chemistry and biology. The first application shows how, through Web-ARM, research projects (e.g., rhodopsin and rhodopsin mutant screening) can be carried out in significantly less time with respect to using the required computational photochemistry tools via a command line. The second application documents the use of Web-ARM in a real-life educational/training activity, through a hands-on experience illustrating the concepts of rhodopsin color tuning.

Web-ARM: A Web-Based Interface for the Automatic Construction of QM/MM Models of Rhodopsins

Laura Pedraza-González
Primo
;
2020-01-01

Abstract

This article introduces Web-ARM, a specialized tool, online available, designed to build quantum mechanical/molecular mechanical models of rhodopsins, a widely spread family of light-responsive proteins. Web-ARM allows the rapidly building of models of rhodopsins with a documented quality and the prediction of trends in UV–vis absorption maximum wavelengths, based on their excitation energies computed at the CASPT2//CASSCF/Amber level of theory. Web-ARM builds upon the recently reported, python-based a-ARM protocol [J. Chem. Theory Comput., 2019, 15, 3134–3152] and, as such, necessitates only a crystallographic structure or a comparative model in PDB format and a very basic knowledge of the studied rhodopsin system. The user-friendly web interface uses such input to generate congruous, gas-phase models of rhodopsins and, if requested, their mutants. We present two possible applications of Web-ARM, which showcase how the interface can be employed to assist both research and educational activities in fields at the interface between chemistry and biology. The first application shows how, through Web-ARM, research projects (e.g., rhodopsin and rhodopsin mutant screening) can be carried out in significantly less time with respect to using the required computational photochemistry tools via a command line. The second application documents the use of Web-ARM in a real-life educational/training activity, through a hands-on experience illustrating the concepts of rhodopsin color tuning.
2020
Pedraza-González, Laura; María Del Carmen Marín, ; Jorge, Alejandro N.; Ruck, Tyler D.; Yang, Xuchun; Valentini, Alessio; Olivucci, Massimo; Luca De V...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1220247
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact