: The prevalence of longstanding chronic diseases has increased worldwide, along with the average age of the population. As a result, an increasing number of people is affected by two or more chronic conditions simultaneously, and healthcare systems are facing the challenge of treating multimorbid patients effectively. Current therapeutic strategies are suited to manage each chronic condition separately, without considering the whole clinical condition of the patient. This approach may lead to suboptimal clinical outcomes and system inefficiencies (e.g. redundant diagnostic tests and inadequate drug prescriptions). We develop a novel methodology based on the joint implementation of data reduction and clustering algorithms to identify patterns of chronic diseases that are likely to co-occur in multichronic patients. We analyse data from a large adult population of multichronic patients living in Tuscany (Italy) in 2019 which was stratified by sex and age classes. Results demonstrate that (i) cardio-metabolic, endocrine, and neuro-degenerative diseases represent a stable pattern of multimorbidity, and (ii) disease prevalence and clustering vary across ages and between women and men. Identifying the most common multichronic profiles can help tailor medical protocols to patients' needs and reduce costs. Furthermore, analysing temporal patterns of disease can refine risk predictions for evolutive chronic conditions.

Learning prevalent patterns of co-morbidities in multichronic patients using population-based healthcare data

Tricò, Domenico;Leonetti, Simone
2024-01-01

Abstract

: The prevalence of longstanding chronic diseases has increased worldwide, along with the average age of the population. As a result, an increasing number of people is affected by two or more chronic conditions simultaneously, and healthcare systems are facing the challenge of treating multimorbid patients effectively. Current therapeutic strategies are suited to manage each chronic condition separately, without considering the whole clinical condition of the patient. This approach may lead to suboptimal clinical outcomes and system inefficiencies (e.g. redundant diagnostic tests and inadequate drug prescriptions). We develop a novel methodology based on the joint implementation of data reduction and clustering algorithms to identify patterns of chronic diseases that are likely to co-occur in multichronic patients. We analyse data from a large adult population of multichronic patients living in Tuscany (Italy) in 2019 which was stratified by sex and age classes. Results demonstrate that (i) cardio-metabolic, endocrine, and neuro-degenerative diseases represent a stable pattern of multimorbidity, and (ii) disease prevalence and clustering vary across ages and between women and men. Identifying the most common multichronic profiles can help tailor medical protocols to patients' needs and reduce costs. Furthermore, analysing temporal patterns of disease can refine risk predictions for evolutive chronic conditions.
2024
Seghieri, Chiara; Tortù, Costanza; Tricò, Domenico; Leonetti, Simone
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1220787
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact