Real-world data streams naturally include the repetition of previous concepts. From a Continual Learning (CL) perspective, repetition is a property of the environment and, unlike replay, cannot be controlled by the agent. Nowadays, the Class-Incremental (CI) scenario represents the leading test-bed for assessing and comparing CL strategies. This scenario type is very easy to use, but it never allows revisiting previously seen classes, thus completely neglecting the role of repetition. We focus on the family of Class-Incremental with Repetition (CIR) scenario, where repetition is embedded in the definition of the stream. We propose two stochastic stream generators that produce a wide range of CIR streams starting from a single dataset and a few interpretable control parameters. We conduct the first comprehensive evaluation of repetition in CL by studying the behavior of existing CL strategies under different CIR streams. We then present a novel replay strategy that exploits repetition and counteracts the natural imbalance present in the stream. On both CIFAR100 and TinyImageNet, our strategy outperforms other replay approaches, which are not designed for environments with repetition.

Class-Incremental Learning with Repetition

Hamed Hemati;Andrea Cossu;Antonio Carta;Julio Hurtado;Davide Bacciu;Vincenzo Lomonaco;
2023-01-01

Abstract

Real-world data streams naturally include the repetition of previous concepts. From a Continual Learning (CL) perspective, repetition is a property of the environment and, unlike replay, cannot be controlled by the agent. Nowadays, the Class-Incremental (CI) scenario represents the leading test-bed for assessing and comparing CL strategies. This scenario type is very easy to use, but it never allows revisiting previously seen classes, thus completely neglecting the role of repetition. We focus on the family of Class-Incremental with Repetition (CIR) scenario, where repetition is embedded in the definition of the stream. We propose two stochastic stream generators that produce a wide range of CIR streams starting from a single dataset and a few interpretable control parameters. We conduct the first comprehensive evaluation of repetition in CL by studying the behavior of existing CL strategies under different CIR streams. We then present a novel replay strategy that exploits repetition and counteracts the natural imbalance present in the stream. On both CIFAR100 and TinyImageNet, our strategy outperforms other replay approaches, which are not designed for environments with repetition.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1221327
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact