Federated Echo State Networks represent an efficient methodology for learning in pervasive environments with private temporal data due to the low computational cost required by the learning phase. In this paper, we propose Partial Federated Ridge Regression (pFedRR), an approximate, communication-efficient version of the exact method for learning the readout in a federated setting. Each client compresses the local statistics to be exchanged with the server via an importance-based method, which selects the most relevant neurons with respect to the local distribution. We evaluate the methodology on two Human State Monitoring benchmarks, in comparison with the exact method and a communication-efficient method that randomly selects the information to exchange. Results show that the importance-based selection of the information significantly reduces the communication cost, and fosters the generalization capabilities in the face of statistical heterogeneity across clients.

Communication-Efficient Ridge Regression in Federated Echo State Networks

De Caro, Valerio;Di Mauro, Antonio;Bacciu, Davide;Gallicchio, Claudio
2023-01-01

Abstract

Federated Echo State Networks represent an efficient methodology for learning in pervasive environments with private temporal data due to the low computational cost required by the learning phase. In this paper, we propose Partial Federated Ridge Regression (pFedRR), an approximate, communication-efficient version of the exact method for learning the readout in a federated setting. Each client compresses the local statistics to be exchanged with the server via an importance-based method, which selects the most relevant neurons with respect to the local distribution. We evaluate the methodology on two Human State Monitoring benchmarks, in comparison with the exact method and a communication-efficient method that randomly selects the information to exchange. Results show that the importance-based selection of the information significantly reduces the communication cost, and fosters the generalization capabilities in the face of statistical heterogeneity across clients.
2023
978-2-87587-088-9
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1221750
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact