The Scattering and Neutrino Detector at the LHC (SND@LHC) started taking data at the beginning of Run 3 of the LHC. The experiment is designed to perform measurements with neutrinos produced in proton-proton collisions at the LHC in an energy range between 100 GeV and 1 TeV. It covers a previously unexplored pseudo-rapidity range of 7.2 < η< 8.4 . The detector is located 480 m downstream of the ATLAS interaction point in the TI18 tunnel. It comprises a veto system, a target consisting of tungsten plates interleaved with nuclear emulsion and scintillating fiber (SciFi) trackers, followed by a muon detector (UpStream, US and DownStream, DS). In this article we report the measurement of the muon flux in three subdetectors: the emulsion, the SciFi trackers and the DownStream Muon detector. The muon flux per integrated luminosity through an 18 × 18 cm 2 area in the emulsion is: 1.5±0.1(stat)×104fb/cm2. The muon flux per integrated luminosity through a 31 × 31 cm 2 area in the centre of the SciFi is: 2.06±0.01(stat)±0.12(sys)×104fb/cm2 The muon flux per integrated luminosity through a 52 × 52 cm 2 area in the centre of the downstream muon system is: 2.35±0.01(stat)±0.10(sys)×104fb/cm2 The total relative uncertainty of the measurements by the electronic detectors is 6 % for the SciFi and 4 % for the DS measurement. The Monte Carlo simulation prediction of these fluxes is 20–25 % lower than the measured values.

Measurement of the muon flux at the SND@LHC experiment

Graverini, E.;
2024-01-01

Abstract

The Scattering and Neutrino Detector at the LHC (SND@LHC) started taking data at the beginning of Run 3 of the LHC. The experiment is designed to perform measurements with neutrinos produced in proton-proton collisions at the LHC in an energy range between 100 GeV and 1 TeV. It covers a previously unexplored pseudo-rapidity range of 7.2 < η< 8.4 . The detector is located 480 m downstream of the ATLAS interaction point in the TI18 tunnel. It comprises a veto system, a target consisting of tungsten plates interleaved with nuclear emulsion and scintillating fiber (SciFi) trackers, followed by a muon detector (UpStream, US and DownStream, DS). In this article we report the measurement of the muon flux in three subdetectors: the emulsion, the SciFi trackers and the DownStream Muon detector. The muon flux per integrated luminosity through an 18 × 18 cm 2 area in the emulsion is: 1.5±0.1(stat)×104fb/cm2. The muon flux per integrated luminosity through a 31 × 31 cm 2 area in the centre of the SciFi is: 2.06±0.01(stat)±0.12(sys)×104fb/cm2 The muon flux per integrated luminosity through a 52 × 52 cm 2 area in the centre of the downstream muon system is: 2.35±0.01(stat)±0.10(sys)×104fb/cm2 The total relative uncertainty of the measurements by the electronic detectors is 6 % for the SciFi and 4 % for the DS measurement. The Monte Carlo simulation prediction of these fluxes is 20–25 % lower than the measured values.
2024
Albanese, R.; Alexandrov, A.; Alicante, F.; Anokhina, A.; Asada, T.; Battilana, C.; Bay, A.; Betancourt, C.; Bick, D.; Biswas, R.; Castro, A. Blanco; Boccia, V.; Bogomilov, M.; Bonacorsi, D.; Bonivento, W. M.; Bordalo, P.; Boyarsky, A.; Buontempo, S.; Campanelli, M.; Camporesi, T.; Canale, V.; Castro, A.; Centanni, D.; Cerutti, F.; Chernyavskiy, M.; Choi, K. -Y.; Cholak, S.; Cindolo, F.; Climescu, M.; Conaboy, A. P.; Dallavalle, G. M.; Davino, D.; de Bryas, P. T.; De Lellis, G.; De Magistris, M.; De Roeck, A.; De Rújula, A.; De Serio, M.; De Simone, D.; Crescenzo, A. Di; Donà, R.; Durhan, O.; Fabbri, F.; Fedotovs, F.; Ferrillo, M.; Ferro-Luzzi, M.; Fini, R. A.; Fiorillo, A.; Fresa, R.; Funk, W.; Walls, F. M. Garay; Golovatiuk, A.; Golutvin, A.; Graverini, E.; Guler, A. M.; Guliaeva, V.; Haefeli, G. J.; Hagner, C.; Herrera, J. C. Helo; van Herwijnen, E.; Iengo, P.; Ilieva, S.; Infantino, A.; Iuliano, A.; Jacobsson, R.; Kamiscioglu, C.; Kauniskangas, A. M.; Khalikov, E.; Kim, S. H.; Kim, Y. G.; Klioutchnikov, G.; Komatsu, M.; Konovalova, N.; Kuleshov, S.; Lacker, H. M.; Lantwin, O.; Manghi, F. Lasagni; Lauria, A.; Lee, K. Y.; Lee, K. S.; Meo, S. Lo; Loschiavo, V. P.; Marcellini, S.; Margiotta, A.; Mascellani, A.; Miano, A.; Mikulenko, A.; Montesi, M. C.; Navarria, F. L.; Ogawa, S.; Okateva, N.; Ovchynnikov, M.; Paggi, G.; Park, B. D.; Pastore, A.; Perrotta, A.; Podgrudkov, D.; Polukhina, N.; Prota, A.; Quercia, A.; Ramos, S.; Reghunath, A.; Roganova, T.; Ronchetti, F.; Rovelli, T.; Ruchayskiy, O.; Ruf, T.; Gilarte, M. Sabate; Sadykov, Z.; Samoilov, M.; Scalera, V.; Schmidt-Parzefall, W.; Schneider, O.; Sekhniaidze, G.; Serra, N.; Shaposhnikov, M.; Shevchenko, V.; Shchedrina, T.; Shchutska, L.; Shibuya, H.; Simone, S.; Siroli, G. P.; Sirri, G.; Soares, G.; Sohn, J. Y.; Sandoval, O. J. Soto; Spurio, M.; Starkov, N.; Timiryasov, I.; Tioukov, V.; Tramontano, F.; Trippl, C.; Ursov, E.; Ustyuzhanin, A.; Vankova-Kirilova, G.; Verguilov, V.; Leonardo, N. Viegas Guerreiro; Vilela, C.; Visone, C.; Wanke, R.; Yaman, E.; Yazici, C.; Yoon, C. S.; Zaffaroni, E.; Saa, J. Zamora
File in questo prodotto:
File Dimensione Formato  
s10052-023-12380-3.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 4.15 MB
Formato Adobe PDF
4.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1221947
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact