We introduce the Neron-Severi Lie algebra of a Soergel module and we determine it for a large class of Schubert varieties. This is achieved by investigating which Soergel modules admit a tensor decomposition. We also use the Neron-Severi Lie algebra to provide an easy proof of the well-known fact that a Schubert variety is rationally smooth if and only if its Betti numbers satisfy Poincare duality.

THE NERON-SEVERI LIE ALGEBRA OF A SOERGEL MODULE

Patimo L.
2018-01-01

Abstract

We introduce the Neron-Severi Lie algebra of a Soergel module and we determine it for a large class of Schubert varieties. This is achieved by investigating which Soergel modules admit a tensor decomposition. We also use the Neron-Severi Lie algebra to provide an easy proof of the well-known fact that a Schubert variety is rationally smooth if and only if its Betti numbers satisfy Poincare duality.
2018
Patimo, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1224747
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact