Optical biosensors based on micro/nanofibers are highly valuable for probing and monitoring liquid environments and bioactivity. Most current optical biosensors, however, are still based on glass, semiconductors, or metallic materials, which might not be fully suitable for biologically relevant environments. Here, we introduce biocompatible and flexible microfibers from lotus silk as microenvironmental monitors that exhibit waveguiding of intrinsic fluorescence as well as of coupled light. These features make single-filament monitors excellent building blocks for a variety of sensing functions, including pH probing and detection of bacterial activity. These results pave the way for the development of new and entirely eco-friendly, potentially multiplexed biosensing platforms.
Light-Emitting Microfibers from Lotus Root for Eco-Friendly Optical Waveguides and Biosensing
Albanese, Annachiara;Pisignano, Dario;
2024-01-01
Abstract
Optical biosensors based on micro/nanofibers are highly valuable for probing and monitoring liquid environments and bioactivity. Most current optical biosensors, however, are still based on glass, semiconductors, or metallic materials, which might not be fully suitable for biologically relevant environments. Here, we introduce biocompatible and flexible microfibers from lotus silk as microenvironmental monitors that exhibit waveguiding of intrinsic fluorescence as well as of coupled light. These features make single-filament monitors excellent building blocks for a variety of sensing functions, including pH probing and detection of bacterial activity. These results pave the way for the development of new and entirely eco-friendly, potentially multiplexed biosensing platforms.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.