Genome-wide association studies (GWAS) are a powerful tool for detecting variants associated with complex traits and can help risk stratification and prevention strategies against pancreatic ductal adenocarcinoma (PDAC). However, the strict significance threshold commonly used makes it likely that many true risk loci are missed. Functional annotation of GWAS polymorphisms is a proven strategy to identify additional risk loci. We aimed to investigate single-nucleotide polymorphisms (SNP) in regulatory regions [transcription factor binding sites (TFBSs) and enhancers] that could change the expression profile of multiple genes they act upon and thereby modify PDAC risk. We analyzed a total of 12,636 PDAC cases and 43,443 controls from PanScan/PanC4 and the East Asian GWAS (discovery populations), and the PANDoRA consortium (replication population). We identified four associations that reached study-wide statistical significance in the overall meta-analysis: rs2472632(A) (enhancer variant, OR 1.10, 95%CI 1.06,1.13, p = 5.5 x 10-8), rs17358295(G) (enhancer variant, OR 1.16, 95%CI 1.10,1.22, p = 6.1 x 10-7), rs2232079(T) (TFBS variant, OR 0.88, 95%CI 0.83,0.93, p = 6.4 x 10−6) and rs10025845(A) (TFBS variant, OR 1.88, 95%CI 1.50,1.12, p = 1.32 x 10-5). The SNP with the most significant association, rs2472632, is located in an enhancer predicted to target the coiled-coil domain containing 34 oncogene. Our results provide new insights into genetic risk factors for PDAC by a focused analysis of polymorphisms in regulatory regions and demonstrating the usefulness of functional prioritization to identify loci associated with PDAC risk.

Polymorphisms in transcription factor binding sites and enhancer regions and pancreatic ductal adenocarcinoma risk

Boggi, Ugo;Giaccherini, Matteo;Landi, Stefano;Gentiluomo, Manuel;Di Franco, Gregorio;Morelli, Luca;Campa, Daniele;
2024-01-01

Abstract

Genome-wide association studies (GWAS) are a powerful tool for detecting variants associated with complex traits and can help risk stratification and prevention strategies against pancreatic ductal adenocarcinoma (PDAC). However, the strict significance threshold commonly used makes it likely that many true risk loci are missed. Functional annotation of GWAS polymorphisms is a proven strategy to identify additional risk loci. We aimed to investigate single-nucleotide polymorphisms (SNP) in regulatory regions [transcription factor binding sites (TFBSs) and enhancers] that could change the expression profile of multiple genes they act upon and thereby modify PDAC risk. We analyzed a total of 12,636 PDAC cases and 43,443 controls from PanScan/PanC4 and the East Asian GWAS (discovery populations), and the PANDoRA consortium (replication population). We identified four associations that reached study-wide statistical significance in the overall meta-analysis: rs2472632(A) (enhancer variant, OR 1.10, 95%CI 1.06,1.13, p = 5.5 x 10-8), rs17358295(G) (enhancer variant, OR 1.16, 95%CI 1.10,1.22, p = 6.1 x 10-7), rs2232079(T) (TFBS variant, OR 0.88, 95%CI 0.83,0.93, p = 6.4 x 10−6) and rs10025845(A) (TFBS variant, OR 1.88, 95%CI 1.50,1.12, p = 1.32 x 10-5). The SNP with the most significant association, rs2472632, is located in an enhancer predicted to target the coiled-coil domain containing 34 oncogene. Our results provide new insights into genetic risk factors for PDAC by a focused analysis of polymorphisms in regulatory regions and demonstrating the usefulness of functional prioritization to identify loci associated with PDAC risk.
2024
Ünal, Pelin; Lu, Ye; Bueno-de-Mesquita, Bas; van Eijck, Casper H. J.; Talar-Wojnarowska, Renata; Szentesi, Andrea; Gazouli, Maria; Kreivenaite, Edita; Tavano, Francesca; Małecka-Wojciesko, Ewa; Erőss, Bálint; Oliverius, Martin; Bunduc, Stefania; Nóbrega Aoki, Mateus; Vodickova, Ludmila; Boggi, Ugo; Giaccherini, Matteo; Kondrackiene, Jurate; Chammas, Roger; Palmieri, Orazio; Theodoropoulos, George E.; Bijlsma, Maarten F.; Basso, Daniela; Mohelnikova-Duchonova, Beatrice; Soucek, Pavel; Izbicki, Jakob R.; Kiudelis, Vytautas; Vanella, Giuseppe; Arcidiacono, Paolo Giorgio; Włodarczyk, Barbara; Hackert, Thilo; Schöttker, Ben; Uzunoglu, Faik G.; Bambi, Franco; Goetz, Mara; Hlavac, Viktor; Brenner, Hermann; Perri, Francesco; Carrara, Silvia; Landi, Stefano; Hegyi, Péter; Dijk, Frederike; Maiello, Evaristo; Capretti, Giovanni; Testoni, Sabrina Gloria Giulia; Petrone, Maria Chiara; Stocker, Hannah; Ermini, Stefano; Archibugi, Livia; Gentiluomo, Manuel; Cavestro, Giulia Martina; Pezzilli, Raffaele; Di Franco, Gregorio; Milanetto, Anna Caterina; Sperti, Cosimo; Neoptolemos, John P.; Morelli, Luca; Vokacova, Klara; Pasquali, Claudio; Lawlor, Rita T.; Bazzocchi, Francesca; Kupcinskas, Juozas; Capurso, Gabriele; Campa, Daniele; Canzian, Federico
File in questo prodotto:
File Dimensione Formato  
HumGen_2024_Polymorphisms in transcription factor.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1226349
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact